Intelligent diagnostic scheme for lung cancer screening with Raman
spectra data by tensor network machine learning
- URL: http://arxiv.org/abs/2303.06340v1
- Date: Sat, 11 Mar 2023 07:57:37 GMT
- Title: Intelligent diagnostic scheme for lung cancer screening with Raman
spectra data by tensor network machine learning
- Authors: Yu-Jia An, Sheng-Chen Bai, Lin Cheng, Xiao-Guang Li, Cheng-en Wang,
Xiao-Dong Han, Gang Su, Shi-Ju Ran, Cong Wang
- Abstract summary: We propose a tensor-network (TN)-ML method to reliably predict lung cancer patients and their stages via screening Raman spectra data of Volatile organic compounds (VOCs) in exhaled breath.
The accuracy of the samples with high certainty is almost 100$%$.
- Score: 10.813777115744362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) has brought tremendous impacts on biomedical
sciences from academic researches to clinical applications, such as in
biomarkers' detection and diagnosis, optimization of treatment, and
identification of new therapeutic targets in drug discovery. However, the
contemporary AI technologies, particularly deep machine learning (ML), severely
suffer from non-interpretability, which might uncontrollably lead to incorrect
predictions. Interpretability is particularly crucial to ML for clinical
diagnosis as the consumers must gain necessary sense of security and trust from
firm grounds or convincing interpretations. In this work, we propose a
tensor-network (TN)-ML method to reliably predict lung cancer patients and
their stages via screening Raman spectra data of Volatile organic compounds
(VOCs) in exhaled breath, which are generally suitable as biomarkers and are
considered to be an ideal way for non-invasive lung cancer screening. The
prediction of TN-ML is based on the mutual distances of the breath samples
mapped to the quantum Hilbert space. Thanks to the quantum probabilistic
interpretation, the certainty of the predictions can be quantitatively
characterized. The accuracy of the samples with high certainty is almost
100$\%$. The incorrectly-classified samples exhibit obviously lower certainty,
and thus can be decipherably identified as anomalies, which will be handled by
human experts to guarantee high reliability. Our work sheds light on shifting
the ``AI for biomedical sciences'' from the conventional non-interpretable ML
schemes to the interpretable human-ML interactive approaches, for the purpose
of high accuracy and reliability.
Related papers
- Variational and Explanatory Neural Networks for Encoding Cancer Profiles and Predicting Drug Responses [40.80133767939435]
Existing AI models face challenges due to noise in transcriptomics data and lack of biological interpretability.
We introduce VETE, a novel neural network framework that incorporates a variational component to mitigate noise effects.
VETE bridges the gap between AI-driven predictions and biologically meaningful insights in cancer research.
arXiv Detail & Related papers (2024-07-05T13:13:02Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Detecting and clustering swallow events in esophageal long-term high-resolution manometry [48.688209040613216]
We propose a Deep Learning based swallowing detection method to accurately identify swallowing events and secondary non-deglutitive-induced esophageal motility disorders.
We evaluate our computational pipeline on a total of 25 LTHRMs, which were meticulously annotated by medical experts.
arXiv Detail & Related papers (2024-05-02T09:41:31Z) - Reviewing AI's Role in Non-Muscle-Invasive Bladder Cancer Recurrence Prediction [0.4369058206183195]
Non-muscle-invasive Bladder Cancer (NMIBC) imposes a significant human burden and is one of the costliest cancers to manage.
Current tools for predicting NMIBC recurrence rely on scoring systems that often overestimate risk and have poor accuracy.
Machine learning (ML)-based techniques have emerged as a promising approach for predicting NMIBC recurrence by leveraging molecular and clinical data.
arXiv Detail & Related papers (2024-03-15T17:03:45Z) - An Explainable Machine Learning Framework for the Accurate Diagnosis of
Ovarian Cancer [0.0]
Ovarian cancer (OC) is one of the most prevalent types of cancer in women.
The majority of women are diagnosed in advanced stages due to the lack of effective biomarkers and accurate screening tools.
This study suggests different biomarkers for the premenopausal and postmenopausal populations.
arXiv Detail & Related papers (2023-12-11T16:52:50Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
We introduce an innovative projections-based method that seamlessly integrates clinical expertise as domain constraints.
We measure the distance of corrected data from the constraints defining a healthy range of patient data, resulting in a unique predictive metric we term as "trust-scores"
We show an AUROC of 0.865 and a precision of 0.922, that surpasses conventional ML models without such projections.
arXiv Detail & Related papers (2023-08-21T15:14:49Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
The NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients.
We propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression.
arXiv Detail & Related papers (2023-04-26T16:47:42Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Fast and automated biomarker detection in breath samples with machine
learning [1.2026897155625271]
Volatile organic compounds (VOCs) in human breath can reveal a large spectrum of health conditions.
Gas chromatography-mass spectrometry (GC-MS) is used to measure VOCs, but its application is limited by expert-driven data analysis.
We propose a system to perform GC-MS data analysis that exploits deep learning pattern recognition ability to learn and automatically detect VOCs.
arXiv Detail & Related papers (2020-05-24T11:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.