Intelligent diagnostic scheme for lung cancer screening with Raman
spectra data by tensor network machine learning
- URL: http://arxiv.org/abs/2303.06340v1
- Date: Sat, 11 Mar 2023 07:57:37 GMT
- Title: Intelligent diagnostic scheme for lung cancer screening with Raman
spectra data by tensor network machine learning
- Authors: Yu-Jia An, Sheng-Chen Bai, Lin Cheng, Xiao-Guang Li, Cheng-en Wang,
Xiao-Dong Han, Gang Su, Shi-Ju Ran, Cong Wang
- Abstract summary: We propose a tensor-network (TN)-ML method to reliably predict lung cancer patients and their stages via screening Raman spectra data of Volatile organic compounds (VOCs) in exhaled breath.
The accuracy of the samples with high certainty is almost 100$%$.
- Score: 10.813777115744362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) has brought tremendous impacts on biomedical
sciences from academic researches to clinical applications, such as in
biomarkers' detection and diagnosis, optimization of treatment, and
identification of new therapeutic targets in drug discovery. However, the
contemporary AI technologies, particularly deep machine learning (ML), severely
suffer from non-interpretability, which might uncontrollably lead to incorrect
predictions. Interpretability is particularly crucial to ML for clinical
diagnosis as the consumers must gain necessary sense of security and trust from
firm grounds or convincing interpretations. In this work, we propose a
tensor-network (TN)-ML method to reliably predict lung cancer patients and
their stages via screening Raman spectra data of Volatile organic compounds
(VOCs) in exhaled breath, which are generally suitable as biomarkers and are
considered to be an ideal way for non-invasive lung cancer screening. The
prediction of TN-ML is based on the mutual distances of the breath samples
mapped to the quantum Hilbert space. Thanks to the quantum probabilistic
interpretation, the certainty of the predictions can be quantitatively
characterized. The accuracy of the samples with high certainty is almost
100$\%$. The incorrectly-classified samples exhibit obviously lower certainty,
and thus can be decipherably identified as anomalies, which will be handled by
human experts to guarantee high reliability. Our work sheds light on shifting
the ``AI for biomedical sciences'' from the conventional non-interpretable ML
schemes to the interpretable human-ML interactive approaches, for the purpose
of high accuracy and reliability.
Related papers
- Uncertainty-Aware Adaptation of Large Language Models for Protein-Protein Interaction Analysis [10.67543730905283]
Large Language Models (LLMs) have demonstrated remarkable potential in predicting protein structures and interactions.
Yet their inherent uncertainty remains a key challenge for deriving reproducible findings.
We present an uncertainty-aware adaptation of LLMs for PPI analysis, leveraging fine-tuned LLaMA-3 and BioMedGPT models.
arXiv Detail & Related papers (2025-02-10T05:54:36Z) - A Robust Support Vector Machine Approach for Raman COVID-19 Data Classification [0.7864304771129751]
In this paper, we investigate the performance of a novel robust formulation for Support Vector Machine (SVM) in classifying COVID-19 samples obtained from Raman spectroscopy.
We derive robust counterpart models of deterministic formulations using bounded-by-norm uncertainty sets around each observation.
The effectiveness of our approach is validated on real-world COVID-19 datasets provided by Italian hospitals.
arXiv Detail & Related papers (2025-01-29T14:02:45Z) - Variational and Explanatory Neural Networks for Encoding Cancer Profiles and Predicting Drug Responses [40.80133767939435]
Existing AI models face challenges due to noise in transcriptomics data and lack of biological interpretability.
We introduce VETE, a novel neural network framework that incorporates a variational component to mitigate noise effects.
VETE bridges the gap between AI-driven predictions and biologically meaningful insights in cancer research.
arXiv Detail & Related papers (2024-07-05T13:13:02Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Detecting and clustering swallow events in esophageal long-term high-resolution manometry [48.688209040613216]
We propose a Deep Learning based swallowing detection method to accurately identify swallowing events and secondary non-deglutitive-induced esophageal motility disorders.
We evaluate our computational pipeline on a total of 25 LTHRMs, which were meticulously annotated by medical experts.
arXiv Detail & Related papers (2024-05-02T09:41:31Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
We introduce an innovative projections-based method that seamlessly integrates clinical expertise as domain constraints.
We measure the distance of corrected data from the constraints defining a healthy range of patient data, resulting in a unique predictive metric we term as "trust-scores"
We show an AUROC of 0.865 and a precision of 0.922, that surpasses conventional ML models without such projections.
arXiv Detail & Related papers (2023-08-21T15:14:49Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
The NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients.
We propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression.
arXiv Detail & Related papers (2023-04-26T16:47:42Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Fast and automated biomarker detection in breath samples with machine
learning [1.2026897155625271]
Volatile organic compounds (VOCs) in human breath can reveal a large spectrum of health conditions.
Gas chromatography-mass spectrometry (GC-MS) is used to measure VOCs, but its application is limited by expert-driven data analysis.
We propose a system to perform GC-MS data analysis that exploits deep learning pattern recognition ability to learn and automatically detect VOCs.
arXiv Detail & Related papers (2020-05-24T11:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.