Equivariant Imaging Biomarkers for Robust Unsupervised Segmentation of Histopathology
- URL: http://arxiv.org/abs/2505.05689v1
- Date: Thu, 08 May 2025 23:19:21 GMT
- Title: Equivariant Imaging Biomarkers for Robust Unsupervised Segmentation of Histopathology
- Authors: Fuyao Chen, Yuexi Du, Tal Zeevi, Nicha C. Dvornek, John A. Onofrey,
- Abstract summary: Histopathology evaluation is essential for accurate disease diagnosis and prognosis.<n>Traditional manual analysis by specially trained pathologists is time-consuming, labor-intensive, cost-inefficient, and prone to inter-rater variability.
- Score: 4.079341102022069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Histopathology evaluation of tissue specimens through microscopic examination is essential for accurate disease diagnosis and prognosis. However, traditional manual analysis by specially trained pathologists is time-consuming, labor-intensive, cost-inefficient, and prone to inter-rater variability, potentially affecting diagnostic consistency and accuracy. As digital pathology images continue to proliferate, there is a pressing need for automated analysis to address these challenges. Recent advancements in artificial intelligence-based tools such as machine learning (ML) models, have significantly enhanced the precision and efficiency of analyzing histopathological slides. However, despite their impressive performance, ML models are invariant only to translation, lacking invariance to rotation and reflection. This limitation restricts their ability to generalize effectively, particularly in histopathology, where images intrinsically lack meaningful orientation. In this study, we develop robust, equivariant histopathological biomarkers through a novel symmetric convolutional kernel via unsupervised segmentation. The approach is validated using prostate tissue micro-array (TMA) images from 50 patients in the Gleason 2019 Challenge public dataset. The biomarkers extracted through this approach demonstrate enhanced robustness and generalizability against rotation compared to models using standard convolution kernels, holding promise for enhancing the accuracy, consistency, and robustness of ML models in digital pathology. Ultimately, this work aims to improve diagnostic and prognostic capabilities of histopathology beyond prostate cancer through equivariant imaging.
Related papers
- The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective [10.884863227198975]
We systematically synthesize the latest OCT/A and AO developments, AI/ML approaches, and mHealth/Tele-ophthalmology initiatives.<n>We propose a roadmap for multicenter protocol standardization, prospective validation trials, and seamless incorporation of retinal screening into primary and specialty care pathways.
arXiv Detail & Related papers (2025-05-27T07:19:37Z) - AI Assisted Cervical Cancer Screening for Cytology Samples in Developing Countries [0.18472148461613155]
Cervical cancer remains a significant health challenge, with high incidence and mortality rates.<n> Conventional Liquid-Based Cytology(LBC) is a labor-intensive process, requires expert pathologists and is highly prone to errors.<n>This paper introduces an innovative approach that integrates low-cost biological microscopes with our simple and efficient AI algorithms for automated whole-slide analysis.
arXiv Detail & Related papers (2025-04-29T05:18:59Z) - Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
We propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification.<n>By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach.<n>Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets.
arXiv Detail & Related papers (2025-04-18T15:39:46Z) - Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach [36.92842246372894]
Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN) is a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples.<n>By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability.
arXiv Detail & Related papers (2025-03-29T02:14:05Z) - A Vector-Quantized Foundation Model for Patient Behavior Monitoring [43.02353546717171]
This paper introduces a novel foundation model based on a modified vector quantized variational autoencoder, specifically designed to process real-world data from smartphones and wearable devices.<n>We leveraged the discrete latent representation of this model to effectively perform two downstream tasks, suicide risk assessment and emotional state prediction, on different held-out clinical cohorts without the need of fine-tuning.
arXiv Detail & Related papers (2025-03-19T14:01:16Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.<n>Our findings illustrate significant advancements in the precision of segmentation and classification.<n>This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
arXiv Detail & Related papers (2025-02-23T23:28:47Z) - Efficient Precision Control in Object Detection Models for Enhanced and Reliable Ovarian Follicle Counting [37.9434503914985]
A major challenge for machine learning is to control the precision of predictions while enabling a high recall.<n>We use a multiple testing procedure that gives an overperforming way to solve the standard Precision-Recall trade-off.<n>As it is model-agnostic, this contextual selection procedure paves the way to the development of a strategy that can improve the performance of any model without the need of retraining it.
arXiv Detail & Related papers (2025-01-23T19:04:47Z) - Towards a Comprehensive Benchmark for Pathological Lymph Node Metastasis in Breast Cancer Sections [21.75452517154339]
We reprocessed 1,399 whole slide images (WSIs) and labels from the Camelyon-16 and Camelyon-17 datasets.
Based on the sizes of re-annotated tumor regions, we upgraded the binary cancer screening task to a four-class task.
arXiv Detail & Related papers (2024-11-16T09:19:24Z) - Generative Adversarial Networks for Stain Normalisation in
Histopathology [2.2166690647926037]
One of the significant roadblocks to current research is the high level of visual variability across digital pathology images.
Sten normalisation aims to standardise the visual profile of digital pathology images without changing the structural content of the images.
This is an ongoing field of study as researchers aim to identify a method which efficiently normalises pathology images to make AI models more robust and generalisable.
arXiv Detail & Related papers (2023-08-05T11:38:05Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.