論文の概要: Probing neural representations of scene perception in a hippocampally
dependent task using artificial neural networks
- arxiv url: http://arxiv.org/abs/2303.06367v1
- Date: Sat, 11 Mar 2023 10:26:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 19:17:09.020569
- Title: Probing neural representations of scene perception in a hippocampally
dependent task using artificial neural networks
- Title(参考訳): 人工ニューラルネットワークを用いた海馬依存課題におけるシーン知覚の神経表現
- Authors: Markus Frey, Christian F. Doeller, Caswell Barry
- Abstract要約: バックプロパゲーションによって訓練されたディープ人工ニューラルネットワーク(DNN)は、哺乳類の視覚システムの効果的なモデルを提供する。
本稿では,海馬依存型課題に触発されたシーン認識ベンチマークについて述べる。
側頭葉構造と海馬の接続性に着想を得たネットワークアーキテクチャを用いて,三重項損失を用いて訓練したDNNが,この課題を学習できることを実証した。
- 参考スコア(独自算出の注目度): 1.0312968200748116
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep artificial neural networks (DNNs) trained through backpropagation
provide effective models of the mammalian visual system, accurately capturing
the hierarchy of neural responses through primary visual cortex to inferior
temporal cortex (IT). However, the ability of these networks to explain
representations in higher cortical areas is relatively lacking and considerably
less well researched. For example, DNNs have been less successful as a model of
the egocentric to allocentric transformation embodied by circuits in
retrosplenial and posterior parietal cortex. We describe a novel scene
perception benchmark inspired by a hippocampal dependent task, designed to
probe the ability of DNNs to transform scenes viewed from different egocentric
perspectives. Using a network architecture inspired by the connectivity between
temporal lobe structures and the hippocampus, we demonstrate that DNNs trained
using a triplet loss can learn this task. Moreover, by enforcing a factorized
latent space, we can split information propagation into "what" and "where"
pathways, which we use to reconstruct the input. This allows us to beat the
state-of-the-art for unsupervised object segmentation on the CATER and
MOVi-A,B,C benchmarks.
- Abstract(参考訳): バックプロパゲーションによって訓練された深層人工ニューラルネットワーク(dnn)は、哺乳類の視覚システムの効果的なモデルを提供し、一次視覚野から下側皮質(it)への神経応答の階層を正確に捉える。
しかし、これらのネットワークが高次皮質領域の表現を説明する能力は比較的欠如しており、十分に研究されていない。
例えば、dnnは後頭葉皮質と後頭頂皮質の回路によって具現化されたエゴセントリックからアロセントリック変換のモデルとしてはあまり成功していない。
海馬依存タスクに触発された新たなシーン知覚ベンチマークについて述べる。これはDNNが異なる自我中心の視点から見るシーンを変換する能力を探索するために設計されたものである。
側頭葉構造と海馬の接続性に着想を得たネットワークアーキテクチャを用いて,三重項損失を用いて訓練されたdnnがこのタスクを学習できることを実証する。
さらに、因子化された潜在空間を強制することにより、情報伝達を「何」と「どこ」の経路に分割し、入力を再構築することができる。
これにより、CATERとMOVi-A,B,Cベンチマークで、教師なしオブジェクトセグメンテーションの最先端を破ることができる。
関連論文リスト
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Spiking representation learning for associative memories [0.0]
本稿では、教師なし表現学習と連想記憶操作を行う新しい人工スパイクニューラルネットワーク(SNN)を提案する。
モデルの構造は新皮質列状構造から派生し,隠れた表現を学習するためのフィードフォワードプロジェクションと,連想記憶を形成するための繰り返しプロジェクションを組み合わせたものである。
論文 参考訳(メタデータ) (2024-06-05T08:30:11Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
皮質補綴は視覚野に移植された装置で、電気的にニューロンを刺激することで失った視力を回復しようとする。
現在、これらのデバイスが提供する視覚は限られており、刺激による視覚知覚を正確に予測することはオープンな課題である。
我々は、視覚システムの有望なモデルとして登場した「脳様」畳み込みニューラルネットワーク(CNN)を活用することで、この問題に対処することを提案する。
論文 参考訳(メタデータ) (2022-09-27T17:33:19Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - Efficient visual object representation using a biologically plausible
spike-latency code and winner-take-all inhibition [0.0]
スパイキングニューラルネットワーク(SNN)は、物体認識システムの効率性と生物学的妥当性を向上させる可能性がある。
本稿では、スパイクレイテンシ符号化とWTA-オール阻害(WTA-I)を用いて視覚刺激を効率的に表現するSNNモデルを提案する。
我々は、150個のスパイクニューロンからなるネットワークが、40個のスパイクを持つオブジェクトを効率的に表現できることを実証した。
論文 参考訳(メタデータ) (2022-05-20T17:48:02Z) - Improving Neural Predictivity in the Visual Cortex with Gated Recurrent
Connections [0.0]
我々は,腹側視覚ストリームのユビキタスな特徴である横方向のリカレント接続を考慮したアーキテクチャに焦点を移し,適応的受容場を創出することを目指している。
本研究は,我々のアプローチの堅牢性と活性化の生物学的忠実性を高めるために,特定のデータ拡張技術を用いている。
論文 参考訳(メタデータ) (2022-03-22T17:27:22Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
我々はSwap-VAEと呼ばれる神経活動の不整合表現を学習するための新しい教師なしアプローチを導入する。
このアプローチは、生成モデリングフレームワークとインスタンス固有のアライメント損失を組み合わせたものです。
我々は、行動に関連付けられた関連する潜在次元に沿って、ニューラルネットワークをアンタングルする表現を構築することが可能であることを示す。
論文 参考訳(メタデータ) (2021-11-03T16:39:43Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。