Diffusion-Based Hierarchical Multi-Label Object Detection to Analyze
Panoramic Dental X-rays
- URL: http://arxiv.org/abs/2303.06500v3
- Date: Mon, 5 Jun 2023 11:03:32 GMT
- Title: Diffusion-Based Hierarchical Multi-Label Object Detection to Analyze
Panoramic Dental X-rays
- Authors: Ibrahim Ethem Hamamci and Sezgin Er and Enis Simsar and Anjany
Sekuboyina and Mustafa Gundogar and Bernd Stadlinger and Albert Mehl and
Bjoern Menze
- Abstract summary: We develop an end-to-end model that can identify problematic teeth with dental enumeration and associated diagnoses at the same time.
To learn from all three hierarchies jointly, we introduce a novel diffusion-based hierarchical multi-label object detection framework.
Experimental results show that our method significantly outperforms state-of-the-art object detection methods.
- Score: 1.2239764810898268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the necessity for precise treatment planning, the use of panoramic
X-rays to identify different dental diseases has tremendously increased.
Although numerous ML models have been developed for the interpretation of
panoramic X-rays, there has not been an end-to-end model developed that can
identify problematic teeth with dental enumeration and associated diagnoses at
the same time. To develop such a model, we structure the three distinct types
of annotated data hierarchically following the FDI system, the first labeled
with only quadrant, the second labeled with quadrant-enumeration, and the third
fully labeled with quadrant-enumeration-diagnosis. To learn from all three
hierarchies jointly, we introduce a novel diffusion-based hierarchical
multi-label object detection framework by adapting a diffusion-based method
that formulates object detection as a denoising diffusion process from noisy
boxes to object boxes. Specifically, to take advantage of the hierarchically
annotated data, our method utilizes a novel noisy box manipulation technique by
adapting the denoising process in the diffusion network with the inference from
the previously trained model in hierarchical order. We also utilize a
multi-label object detection method to learn efficiently from partial
annotations and to give all the needed information about each abnormal tooth
for treatment planning. Experimental results show that our method significantly
outperforms state-of-the-art object detection methods, including RetinaNet,
Faster R-CNN, DETR, and DiffusionDet for the analysis of panoramic X-rays,
demonstrating the great potential of our method for hierarchically and
partially annotated datasets. The code and the data are available at:
https://github.com/ibrahimethemhamamci/HierarchicalDet.
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Self-supervised pre-training with diffusion model for few-shot landmark detection in x-ray images [0.8793721044482612]
This study introduces a novel application of denoising diffusion probabilistic models (DDPMs) to the landmark detection task.
Our key innovation lies in leveraging DDPMs for self-supervised pre-training in landmark detection.
This method enables accurate landmark detection with minimal annotated training data.
arXiv Detail & Related papers (2024-07-25T15:32:59Z) - Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection [77.23918785277404]
We present Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection.
Specifically, we include noises to produce corrupted 3D object size and class label, distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs.
We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods.
arXiv Detail & Related papers (2023-12-05T18:54:03Z) - Diffusion-based 3D Object Detection with Random Boxes [58.43022365393569]
Existing anchor-based 3D detection methods rely on empiricals setting of anchors, which makes the algorithms lack elegance.
Our proposed Diff3Det migrates the diffusion model to proposal generation for 3D object detection by considering the detection boxes as generative targets.
In the inference stage, the model progressively refines a set of random boxes to the prediction results.
arXiv Detail & Related papers (2023-09-05T08:49:53Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - A Sequence Agnostic Multimodal Preprocessing for Clogged Blood Vessel
Detection in Alzheimer's Diagnosis [1.394948342529531]
Successful identification of blood vessel blockage is a crucial step for Alzheimer's disease diagnosis.
In this study, we propose several preprocessing schemes to improve the performance of machine learning methods.
arXiv Detail & Related papers (2022-11-06T13:22:05Z) - Probabilistic Integration of Object Level Annotations in Chest X-ray
Classification [37.99281019411076]
We propose a new probabilistic latent variable model for disease classification in chest X-ray images.
Global dataset features are learned in the lower level layers of the model.
Specific details and nuances in the fine-grained expert object-level annotations are learned in the final layers.
arXiv Detail & Related papers (2022-10-13T12:53:42Z) - CORPS: Cost-free Rigorous Pseudo-labeling based on Similarity-ranking
for Brain MRI Segmentation [3.1657395760137406]
We propose a semi-supervised segmentation framework built upon a novel atlas-based pseudo-labeling method and a 3D deep convolutional neural network (DCNN) for 3D brain MRI segmentation.
The experimental results demonstrate the superiority of the proposed framework over the baseline method both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-05-19T14:42:49Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.