Self-supervised pre-training with diffusion model for few-shot landmark detection in x-ray images
- URL: http://arxiv.org/abs/2407.18125v2
- Date: Tue, 29 Oct 2024 16:10:10 GMT
- Title: Self-supervised pre-training with diffusion model for few-shot landmark detection in x-ray images
- Authors: Roberto Di Via, Francesca Odone, Vito Paolo Pastore,
- Abstract summary: This study introduces a novel application of denoising diffusion probabilistic models (DDPMs) to the landmark detection task.
Our key innovation lies in leveraging DDPMs for self-supervised pre-training in landmark detection.
This method enables accurate landmark detection with minimal annotated training data.
- Score: 0.8793721044482612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have been extensively applied in the medical domain for various tasks, including image classification, segmentation, and landmark detection. However, their application is often hindered by data scarcity, both in terms of available annotations and images. This study introduces a novel application of denoising diffusion probabilistic models (DDPMs) to the landmark detection task, specifically addressing the challenge of limited annotated data in x-ray imaging. Our key innovation lies in leveraging DDPMs for self-supervised pre-training in landmark detection, a previously unexplored approach in this domain. This method enables accurate landmark detection with minimal annotated training data (as few as 50 images), surpassing both ImageNet supervised pre-training and traditional self-supervised techniques across three popular x-ray benchmark datasets. To our knowledge, this work represents the first application of diffusion models for self-supervised learning in landmark detection, which may offer a valuable pre-training approach in few-shot regimes, for mitigating data scarcity.
Related papers
- FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks [44.54301473673582]
We propose the first foundation model-enabled one-shot landmark detection (FM-OSD) framework for accurate landmark detection in medical images.
By using solely a single template image, our method demonstrates significant superiority over strong state-of-the-art one-shot landmark detection methods.
arXiv Detail & Related papers (2024-07-07T15:37:02Z) - Position-Guided Prompt Learning for Anomaly Detection in Chest X-Rays [46.78926066405227]
Anomaly detection in chest X-rays is a critical task.
Recently, CLIP-based methods, pre-trained on a large number of medical images, have shown impressive performance on zero/few-shot downstream tasks.
We propose a position-guided prompt learning method to adapt the task data to the frozen CLIP-based model.
arXiv Detail & Related papers (2024-05-20T12:11:41Z) - Is in-domain data beneficial in transfer learning for landmarks
detection in x-ray images? [1.5348047288817481]
We study whether the usage of small-scale in-domain x-ray image datasets may provide any improvement for landmark detection over models pre-trained on large natural image datasets only.
Our results show that using in-domain source datasets brings marginal or no benefit with respect to an ImageNet out-of-domain pre-training.
Our findings can provide an indication for the development of robust landmark detection systems in medical images when no large annotated dataset is available.
arXiv Detail & Related papers (2024-03-03T10:35:00Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
Text-to-image diffusion models have shown great potential for benefiting image recognition.
Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images.
We introduce customized solutions by fully exploiting the aforementioned free attention masks.
arXiv Detail & Related papers (2023-08-13T10:07:46Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Facial Anatomical Landmark Detection using Regularized Transfer Learning
with Application to Fetal Alcohol Syndrome Recognition [24.27777060287004]
Fetal alcohol syndrome (FAS) caused by prenatal alcohol exposure can result in a series of cranio-facial anomalies.
Anatomical landmark detection is important to detect the presence of FAS associated facial anomalies.
Current deep learning-based heatmap regression methods designed for facial landmark detection in natural images assume availability of large datasets.
We develop a new regularized transfer learning approach that exploits the knowledge of a network learned on large facial recognition datasets.
arXiv Detail & Related papers (2021-09-12T11:05:06Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.