論文の概要: Multistage Stochastic Optimization via Kernels
- arxiv url: http://arxiv.org/abs/2303.06515v1
- Date: Sat, 11 Mar 2023 23:19:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 18:31:50.647099
- Title: Multistage Stochastic Optimization via Kernels
- Title(参考訳): カーネルによる多段階確率最適化
- Authors: Dimitris Bertsimas, Kimberly Villalobos Carballo
- Abstract要約: 我々は,多段階最適化問題に対する非パラメトリック,データ駆動,トラクタブルアプローチを開発した。
本稿では,提案手法が最適に近い平均性能で決定ルールを生成することを示す。
- 参考スコア(独自算出の注目度): 3.7565501074323224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a non-parametric, data-driven, tractable approach for solving
multistage stochastic optimization problems in which decisions do not affect
the uncertainty. The proposed framework represents the decision variables as
elements of a reproducing kernel Hilbert space and performs functional
stochastic gradient descent to minimize the empirical regularized loss. By
incorporating sparsification techniques based on function subspace projections
we are able to overcome the computational complexity that standard kernel
methods introduce as the data size increases. We prove that the proposed
approach is asymptotically optimal for multistage stochastic optimization with
side information. Across various computational experiments on stochastic
inventory management problems, {our method performs well in multidimensional
settings} and remains tractable when the data size is large. Lastly, by
computing lower bounds for the optimal loss of the inventory control problem,
we show that the proposed method produces decision rules with near-optimal
average performance.
- Abstract(参考訳): 我々は,不確実性に影響を与えない多段階確率的最適化問題を解くための非パラメトリック,データ駆動,扱いやすい手法を開発した。
提案フレームワークは, 決定変数を再生カーネルヒルベルト空間の要素として表現し, 経験的正規化損失を最小限に抑える機能的確率勾配降下を行う。
関数部分空間投影に基づくスパーシフィケーション技術を導入することで、データサイズが大きくなるにつれて、標準カーネルメソッドが導入する計算複雑性を克服することができる。
提案手法は側情報を用いた多段階確率最適化に漸近的に最適であることを示す。
確率的在庫管理問題に関する様々な計算実験において、本手法は多次元設定において良好に機能し、データサイズが大きければトラクタブルである。
最後に,在庫管理問題の最適損失に対する下位境界の計算により,提案手法が最適に近い平均性能で決定ルールを生成することを示す。
関連論文リスト
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Data-driven rules for multidimensional reflection problems [1.0742675209112622]
反射型制御を伴う可逆拡散に対する多変量特異制御問題について検討する。
与えられた拡散力学に対して、最適な領域が強い星型であると仮定し、ポリトープ近似に基づく勾配降下アルゴリズムを提案し、コスト最小化領域を数値的に決定する。
最後に,制御器に拡散力学が未知な場合のデータ駆動型解について検討する。
論文 参考訳(メタデータ) (2023-11-11T18:36:17Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
一般化された複合ミラー降下アルゴリズムの一群を提案し,解析する。
適応的なステップサイズでは、提案アルゴリズムは問題の事前知識を必要とせずに収束する。
決定集合の低次元構造を高次元問題に活用する。
論文 参考訳(メタデータ) (2022-11-21T18:31:43Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
雑音観測によるスパース信号回復問題に対する反復2次最適化ルーチンの適用について論じる。
本稿では,Median-of-Meansのような手法を用いて,対応するソリューションの信頼性を向上する方法について述べる。
論文 参考訳(メタデータ) (2020-06-11T12:31:20Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
ラッソ型問題に適した行列逆転のない効率的な暗黙微分アルゴリズムを提案する。
提案手法は,解の空間性を利用して高次元データにスケールする。
論文 参考訳(メタデータ) (2020-02-20T18:43:42Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。