論文の概要: Color Mismatches in Stereoscopic Video: Real-World Dataset and Deep
Correction Method
- arxiv url: http://arxiv.org/abs/2303.06657v1
- Date: Sun, 12 Mar 2023 13:13:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 17:36:21.441982
- Title: Color Mismatches in Stereoscopic Video: Real-World Dataset and Deep
Correction Method
- Title(参考訳): 立体映像における色ミスマッチ:実世界データセットと深部補正法
- Authors: Egor Chistov, Nikita Alutis, Maxim Velikanov, Dmitriy Vatolin
- Abstract要約: データセットは、このタスクのどの部分よりも大きい。
我々は,人工および実世界のデータセットに対して,8種類のカラーミスマッチ補正手法を比較した。
立体画像におけるカラーミスマッチ補正のための最新の局所ニューラルネットワーク法の改良を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a real-world dataset of stereoscopic videos for color-mismatch
correction. It includes real-world distortions achieved using a beam splitter.
Our dataset is larger than any other for this task. We compared eight
color-mismatch-correction methods on artificial and real-world datasets and
showed that local methods are best suited to artificial distortions and that
global methods are best suited to real-world distortions. Our efforts improved
on the latest local neural-network method for color-mismatch correction in
stereoscopic images, making it work faster and better on both artificial and
real-world distortions.
- Abstract(参考訳): カラーミスマッチ補正のための実世界の立体映像データセットを提案する。
ビームスプリッタを用いて実現される現実世界の歪みを含む。
我々のデータセットは他のどのデータセットよりも大きい。
人工および実世界のデータセットにおける8つの色ミスマッチ補正法を比較し,局所的手法は人工的歪みに最適であり,グローバル手法は実世界の歪みに最適であることを示した。
ステレオ画像における色ミスマッチ補正のための最新の局所ニューラルネットワーク法の改良により,人工的および実世界の歪みに対してより高速かつ優れた処理が可能となった。
関連論文リスト
- LatentColorization: Latent Diffusion-Based Speaker Video Colorization [1.2641141743223379]
ビデオのカラー化における時間的一貫性を実現するための新しいソリューションを提案する。
既存の手法と比較して,確立された画像品質指標の大幅な改善を示す。
我々のデータセットは、テレビ/映画からの従来のデータセットとビデオの組み合わせを含んでいる。
論文 参考訳(メタデータ) (2024-05-09T12:06:06Z) - Color Recognition in Challenging Lighting Environments: CNN Approach [0.0]
研究者は、コンピュータビジョンの応用のための色検出技術を強化するために取り組んでいる。
この問題に対処するために,畳み込みニューラルネットワーク(CNN)に基づく色検出手法を提案する。
本手法は照明条件の異なる色検出の堅牢性を大幅に向上させることができることを実験的に検証した。
論文 参考訳(メタデータ) (2024-02-07T11:26:00Z) - Color Equivariant Convolutional Networks [50.655443383582124]
CNNは、偶然に記録された条件によって導入された色の変化の間にデータ不均衡がある場合、苦労する。
カラースペクトル間の形状特徴共有を可能にする新しいディープラーニングビルディングブロックであるカラー等変畳み込み(CEConvs)を提案する。
CEConvsの利点は、様々なタスクに対するダウンストリーム性能と、列車-テストの分散シフトを含む色の変化に対するロバスト性の改善である。
論文 参考訳(メタデータ) (2023-10-30T09:18:49Z) - The Change You Want to See (Now in 3D) [65.61789642291636]
本稿の目的は、同じ3Dシーンの2つの「野生」画像の間で何が変わったかを検出することである。
我々は,全合成データに基づいて学習し,クラスに依存しない変化検出モデルに貢献する。
我々は,人間に注釈を付けた実世界のイメージペアによる評価データセットを新たにリリースした。
論文 参考訳(メタデータ) (2023-08-21T01:59:45Z) - Cross-Camera Deep Colorization [10.254243409261898]
本稿では,カラープラスモノデュアルカメラシステムからの画像の整列と融合を行う,エンドツーエンドの畳み込みニューラルネットワークを提案する。
提案手法は,約10dBPSNRゲインの大幅な改善を継続的に達成する。
論文 参考訳(メタデータ) (2022-08-26T11:02:14Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
画像のリカラー化は、画像の色値を操作して新しいスタイルを与える、新たな編集技術である。
本稿では,空間相関の観点から,従来型と深層学習による再色検出の汎用的検出能力を示す解を探索する。
提案手法は,複数のベンチマークデータセット上での最先端検出精度を実現し,未知の種類の再色法を適切に一般化する。
論文 参考訳(メタデータ) (2022-04-23T01:54:06Z) - Revisiting Domain Generalized Stereo Matching Networks from a Feature
Consistency Perspective [65.37571681370096]
両視点にまたがる単純な画素単位のコントラスト学習を提案する。
ドメイン間の立体的特徴一貫性をよりよく維持するために、立体選択的白化損失を導入する。
提案手法は,複数の最先端ネットワークよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-03-21T11:21:41Z) - A Deep Learning Approach for Digital ColorReconstruction of Lenticular
Films [8.264186103325725]
レンチキュラー映画は1920年代に登場し、フルカラー情報をモーションで捉えることを許した最初の技術の一つとなった。
本研究では,レンチキュラーフィルムのスキャン処理とカラー化を行う自動化された完全ディジタルパイプラインを提案する。
提案手法は,再現されたカラー画像が符号化されたカラー情報と真に一致することを確認しながら,性能を最大化するために,ディープラーニングとモデルに基づくアプローチを融合する。
論文 参考訳(メタデータ) (2022-02-10T11:08:50Z) - Temporally Consistent Video Colorization with Deep Feature Propagation
and Self-regularization Learning [90.38674162878496]
時間的に一貫した新しいビデオカラー化フレームワーク(TCVC)を提案する。
TCVCは、フレームレベルの深い特徴を双方向的に効果的に伝播し、色付けの時間的一貫性を高める。
実験により,本手法は視覚的に満足な色付きビデオを得るだけでなく,最先端の手法よりも時間的整合性が得られることが示された。
論文 参考訳(メタデータ) (2021-10-09T13:00:14Z) - Watching the World Go By: Representation Learning from Unlabeled Videos [78.22211989028585]
近年の単一画像教師なし表現学習技術は,様々なタスクにおいて顕著な成功を収めている。
本稿では,この自然な拡張を無償で提供することを論じる。
そこで本稿では,ビデオノイズコントラスト推定(Voice Noise Contrastive Estimation)を提案する。
論文 参考訳(メタデータ) (2020-03-18T00:07:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。