Extending global-local view alignment for self-supervised learning with remote sensing imagery
- URL: http://arxiv.org/abs/2303.06670v2
- Date: Wed, 24 Apr 2024 03:28:44 GMT
- Title: Extending global-local view alignment for self-supervised learning with remote sensing imagery
- Authors: Xinye Wanyan, Sachith Seneviratne, Shuchang Shen, Michael Kirley,
- Abstract summary: Self-supervised models acquire general feature representations by formulating a pretext task that generates pseudo-labels for massive unlabeled data.
Inspired by DINO, we formulate two pretext tasks for self-supervised learning on remote sensing imagery (SSLRS)
We extend DINO and propose DINO-MC which uses local views of various sized crops instead of a single fixed size.
- Score: 1.5192294544599656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since large number of high-quality remote sensing images are readily accessible, exploiting the corpus of images with less manual annotation draws increasing attention. Self-supervised models acquire general feature representations by formulating a pretext task that generates pseudo-labels for massive unlabeled data to provide supervision for training. While prior studies have explored multiple self-supervised learning techniques in remote sensing domain, pretext tasks based on local-global view alignment remain underexplored, despite achieving state-of-the-art results on natural imagery. Inspired by DINO, which employs an effective representation learning structure with knowledge distillation based on global-local view alignment, we formulate two pretext tasks for self-supervised learning on remote sensing imagery (SSLRS). Using these tasks, we explore the effectiveness of positive temporal contrast as well as multi-sized views on SSLRS. We extend DINO and propose DINO-MC which uses local views of various sized crops instead of a single fixed size in order to alleviate the limited variation in object size observed in remote sensing imagery. Our experiments demonstrate that even when pre-trained on only 10% of the dataset, DINO-MC performs on par or better than existing state-of-the-art SSLRS methods on multiple remote sensing tasks, while using less computational resources. All codes, models, and results are released at https://github.com/WennyXY/DINO-MC.
Related papers
- Pattern Integration and Enhancement Vision Transformer for Self-Supervised Learning in Remote Sensing [11.626527403157922]
We present the Pattern Integration and Enhancement Vision Transformer (PIEViT), a novel self-supervised learning framework for remote sensing imagery.
PIEViT enhances the representation of internal patch features, providing significant improvements over existing self-supervised baselines.
It achieves excellent results in object detection, land cover classification, and change detection, underscoring its robustness, generalization, and transferability for remote sensing image interpretation tasks.
arXiv Detail & Related papers (2024-11-09T07:06:31Z) - RS-Mamba for Large Remote Sensing Image Dense Prediction [58.12667617617306]
We propose the Remote Sensing Mamba (RSM) for dense prediction tasks in large VHR remote sensing images.
RSM is specifically designed to capture the global context of remote sensing images with linear complexity.
Our model achieves better efficiency and accuracy than transformer-based models on large remote sensing images.
arXiv Detail & Related papers (2024-04-03T12:06:01Z) - CtxMIM: Context-Enhanced Masked Image Modeling for Remote Sensing Image Understanding [38.53988682814626]
We propose a context-enhanced masked image modeling method (CtxMIM) for remote sensing image understanding.
CtxMIM formulates original image patches as a reconstructive template and employs a Siamese framework to operate on two sets of image patches.
With the simple and elegant design, CtxMIM encourages the pre-training model to learn object-level or pixel-level features on a large-scale dataset.
arXiv Detail & Related papers (2023-09-28T18:04:43Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Domain Adaptable Self-supervised Representation Learning on Remote
Sensing Satellite Imagery [2.796274924103132]
This work presents a novel domain paradigm for studying contrastive self-supervised representation learning and knowledge transfer using remote sensing satellite data.
The proposed approach investigates the knowledge transfer of selfsupervised representations across the distinct source and target data distributions.
Experiments are conducted on three publicly available datasets, UC Merced Landuse (UCMD), SIRI-WHU, and MLRSNet.
arXiv Detail & Related papers (2023-04-19T14:32:36Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
Seasonal Contrast (SeCo) is an effective pipeline to leverage unlabeled data for in-domain pre-training of re-mote sensing representations.
SeCo will be made public to facilitate transfer learning and enable rapid progress in re-mote sensing applications.
arXiv Detail & Related papers (2021-03-30T18:26:39Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
We show that due to their different characteristics, a non-trivial gap persists between contrastive and supervised learning on standard benchmarks.
We propose novel training methods that exploit the spatially aligned structure of remote sensing data.
Our experiments show that our proposed method closes the gap between contrastive and supervised learning on image classification, object detection and semantic segmentation for remote sensing.
arXiv Detail & Related papers (2020-11-19T17:29:13Z) - Remote Sensing Image Scene Classification with Self-Supervised Paradigm
under Limited Labeled Samples [11.025191332244919]
We introduce new self-supervised learning (SSL) mechanism to obtain the high-performance pre-training model for RSIs scene classification from large unlabeled data.
Experiments on three commonly used RSIs scene classification datasets demonstrated that this new learning paradigm outperforms the traditional dominant ImageNet pre-trained model.
The insights distilled from our studies can help to foster the development of SSL in the remote sensing community.
arXiv Detail & Related papers (2020-10-02T09:27:19Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction.
Bisimulation metrics quantify behavioral similarity between states in continuous MDPs.
We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks.
arXiv Detail & Related papers (2020-06-18T17:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.