Beyond Single Items: Exploring User Preferences in Item Sets with the
Conversational Playlist Curation Dataset
- URL: http://arxiv.org/abs/2303.06791v2
- Date: Fri, 5 May 2023 20:31:45 GMT
- Title: Beyond Single Items: Exploring User Preferences in Item Sets with the
Conversational Playlist Curation Dataset
- Authors: Arun Tejasvi Chaganty, Megan Leszczynski, Shu Zhang, Ravi Ganti,
Krisztian Balog, Filip Radlinski
- Abstract summary: We call this task conversational item set curation.
We present a novel data collection methodology that efficiently collects realistic preferences about item sets in a conversational setting.
We show that it leads raters to express preferences that would not be otherwise expressed.
- Score: 20.42354123651454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Users in consumption domains, like music, are often able to more efficiently
provide preferences over a set of items (e.g. a playlist or radio) than over
single items (e.g. songs). Unfortunately, this is an underexplored area of
research, with most existing recommendation systems limited to understanding
preferences over single items. Curating an item set exponentiates the search
space that recommender systems must consider (all subsets of items!): this
motivates conversational approaches-where users explicitly state or refine
their preferences and systems elicit preferences in natural language-as an
efficient way to understand user needs. We call this task conversational item
set curation and present a novel data collection methodology that efficiently
collects realistic preferences about item sets in a conversational setting by
observing both item-level and set-level feedback. We apply this methodology to
music recommendation to build the Conversational Playlist Curation Dataset
(CPCD), where we show that it leads raters to express preferences that would
not be otherwise expressed. Finally, we propose a wide range of conversational
retrieval models as baselines for this task and evaluate them on the dataset.
Related papers
- Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation [50.19602159938368]
Large language models (LLMs) are revolutionizing conversational recommender systems.
We propose a Reindex-Then-Adapt (RTA) framework, which converts multi-token item titles into single tokens within LLMs.
Our framework demonstrates improved accuracy metrics across three different conversational recommendation datasets.
arXiv Detail & Related papers (2024-05-20T15:37:55Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - Large Language Models are Competitive Near Cold-start Recommenders for
Language- and Item-based Preferences [33.81337282939615]
dialog interfaces that allow users to express language-based preferences offer a fundamentally different modality for preference input.
Inspired by recent successes of prompting paradigms for large language models (LLMs), we study their use for making recommendations.
arXiv Detail & Related papers (2023-07-26T14:47:15Z) - Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item
Recommendation [71.5871100348448]
ColdGPT models item-attribute correlations into an item-attribute graph by extracting fine-grained attributes from item contents.
ColdGPT transfers knowledge into the item-attribute graph from various available data sources, i.e., item contents, historical purchase sequences, and review texts of the existing items.
Extensive experiments show that ColdGPT consistently outperforms the existing SCS recommenders by large margins.
arXiv Detail & Related papers (2023-06-26T07:04:47Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - Hierarchical Conversational Preference Elicitation with Bandit Feedback [36.507341041113825]
We formulate a new conversational bandit problem that allows the recommender system to choose either a key-term or an item to recommend at each round.
We conduct a survey and analyze a real-world dataset to find that, unlike assumptions made in prior works, key-term rewards are mainly affected by rewards of representative items.
We propose two bandit algorithms, Hier-UCB and Hier-LinUCB, that leverage this observed relationship and the hierarchical structure between key-terms and items.
arXiv Detail & Related papers (2022-09-06T05:35:24Z) - Sequential Modeling with Multiple Attributes for Watchlist
Recommendation in E-Commerce [67.6615871959902]
We study the watchlist functionality in e-commerce and introduce a novel watchlist recommendation task.
Our goal is to prioritize which watchlist items the user should pay attention to next by predicting the next items the user will click.
Our proposed recommendation model, Trans2D, is built on top of the Transformer architecture.
arXiv Detail & Related papers (2021-10-18T10:02:15Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
arXiv Detail & Related papers (2020-05-23T08:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.