Snippet-based Conversational Recommender System
- URL: http://arxiv.org/abs/2411.06064v2
- Date: Mon, 14 Apr 2025 19:09:19 GMT
- Title: Snippet-based Conversational Recommender System
- Authors: Haibo Sun, Naoki Otani, Hannah Kim, Dan Zhang, Nikita Bhutani,
- Abstract summary: We propose SnipRec, a novel resource-efficient approach that leverages user-generated content, such as customer reviews, to capture a broader range of user expressions.<n> Experiments across the restaurant, book, and clothing domains show that snippet-based representations outperform document- and sentence-based representations.
- Score: 7.943863017830094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational Recommender Systems (CRS) engage users in interactive dialogues to gather preferences and provide personalized recommendations. While existing studies have advanced conversational strategies, they often rely on predefined attributes or expensive, domain-specific annotated datasets, which limits their flexibility in handling diverse user preferences and adaptability across domains. We propose SnipRec, a novel resource-efficient approach that leverages user-generated content, such as customer reviews, to capture a broader range of user expressions. By employing large language models to map reviews and user responses into concise snippets, SnipRec represents user preferences and retrieves relevant items without the need for intensive manual data collection or fine-tuning. Experiments across the restaurant, book, and clothing domains show that snippet-based representations outperform document- and sentence-based representations, achieving Hits@10 of 0.25-0.55 with 3,000 to 10,000 candidate items while successfully handling free-form user responses.
Related papers
- MSCRS: Multi-modal Semantic Graph Prompt Learning Framework for Conversational Recommender Systems [15.792566559456422]
Conversational Recommender Systems (CRS) aim to provide personalized recommendations by interacting with users through conversations.
We propose a multi-modal semantic graph prompt learning framework for CRS, named MSCRS.
Our proposed method significantly improves accuracy in item recommendation, as well as generates more natural and contextually relevant content in response generation.
arXiv Detail & Related papers (2025-04-15T07:05:22Z) - Why Not Together? A Multiple-Round Recommender System for Queries and Items [37.709748983831034]
A fundamental technique of recommender systems involves modeling user preferences, where queries and items are widely used as symbolic representations of user interests.
We propose a novel approach named Multiple-round Auto Guess-and-Update System (MAGUS) that capitalizes on the synergies between both types.
arXiv Detail & Related papers (2024-12-14T10:49:00Z) - Towards Empathetic Conversational Recommender Systems [77.53167131692]
We propose an empathetic conversational recommender (ECR) framework.
ECR contains two main modules: emotion-aware item recommendation and emotion-aligned response generation.
Our experiments on the ReDial dataset validate the efficacy of our framework in enhancing recommendation accuracy and improving user satisfaction.
arXiv Detail & Related papers (2024-08-30T15:43:07Z) - Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
We propose a knowledge graph based conversational recommender system (referred as KG-CRS)
Specifically, we first integrate the user-item graph and item-attribute graph into a dynamic graph, dynamically changing during the dialogue process by removing negative items or attributes.
We then learn informative embedding of users, items, and attributes by also considering propagation through neighbors on the graph.
arXiv Detail & Related papers (2024-08-02T15:38:55Z) - MemoCRS: Memory-enhanced Sequential Conversational Recommender Systems with Large Language Models [51.65439315425421]
We propose a Memory-enhanced Conversational Recommender System Framework with Large Language Models (dubbed MemoCRS)
User-specific memory is tailored to each user for their personalized interests.
The general memory, encapsulating collaborative knowledge and reasoning guidelines, can provide shared knowledge for users.
arXiv Detail & Related papers (2024-07-06T04:57:25Z) - InteraRec: Screenshot Based Recommendations Using Multimodal Large Language Models [0.6926105253992517]
We introduce a sophisticated and interactive recommendation framework denoted as InteraRec.
InteraRec captures high-frequency screenshots of web pages as users navigate through a website.
We demonstrate the effectiveness of InteraRec in providing users with valuable and personalized offerings.
arXiv Detail & Related papers (2024-02-26T17:47:57Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
We propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems.
Ada-Retrieval iteratively refines user representations to better capture potential candidates in the full item space.
arXiv Detail & Related papers (2024-01-12T15:26:40Z) - Conversational Recommendation as Retrieval: A Simple, Strong Baseline [4.737923227003888]
Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation.
Most CRS approaches do not effectively utilize the signal provided by these conversations.
We propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task.
arXiv Detail & Related papers (2023-05-23T06:21:31Z) - Beyond Single Items: Exploring User Preferences in Item Sets with the
Conversational Playlist Curation Dataset [20.42354123651454]
We call this task conversational item set curation.
We present a novel data collection methodology that efficiently collects realistic preferences about item sets in a conversational setting.
We show that it leads raters to express preferences that would not be otherwise expressed.
arXiv Detail & Related papers (2023-03-13T00:39:04Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - User-Centric Conversational Recommendation with Multi-Aspect User
Modeling [47.310579802092384]
We propose a User-Centric Conversational Recommendation (UCCR) model, which returns to the essence of user preference learning in CRS tasks.
A multi-view preference mapper is conducted to learn the intrinsic correlations among different views in current and historical sessions.
The learned multi-aspect multi-view user preferences are then used for the recommendation and dialogue generation.
arXiv Detail & Related papers (2022-04-20T07:08:46Z) - Learning to Ask Appropriate Questions in Conversational Recommendation [49.31942688227828]
We propose the Knowledge-Based Question Generation System (KBQG), a novel framework for conversational recommendation.
KBQG models a user's preference in a finer granularity by identifying the most relevant relations from a structured knowledge graph.
Finially, accurate recommendations can be generated in fewer conversational turns.
arXiv Detail & Related papers (2021-05-11T03:58:10Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations.
First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference.
Second, there is a semantic gap between natural language expression and item-level user preference.
arXiv Detail & Related papers (2020-07-08T11:14:23Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
arXiv Detail & Related papers (2020-05-23T08:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.