論文の概要: Vessel-Promoted OCT to OCTA Image Translation by Heuristic Contextual Constraints
- arxiv url: http://arxiv.org/abs/2303.06807v2
- Date: Wed, 21 Aug 2024 15:25:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 23:25:53.997382
- Title: Vessel-Promoted OCT to OCTA Image Translation by Heuristic Contextual Constraints
- Title(参考訳): Heuristic Contextual Constraints による血管駆動型OCTからOCTA画像への変換
- Authors: Shuhan Li, Dong Zhang, Xiaomeng Li, Chubin Ou, Lin An, Yanwu Xu, Kwang-Ting Cheng,
- Abstract要約: 利用可能な3次元光コヒーレンス・トモグラフィー画像から3次元OCTA画像へ変換するTransProと呼ばれる新しい手法を提案する。
当社のTransProメソッドは,従来から見過ごされてきた2つの新しいアイデアが中心です。
2つのデータセットの実験結果から、TransProは最先端のアプローチよりも優れています。
- 参考スコア(独自算出の注目度): 28.715207556565638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical Coherence Tomography Angiography (OCTA) is a crucial tool in the clinical screening of retinal diseases, allowing for accurate 3D imaging of blood vessels through non-invasive scanning. However, the hardware-based approach for acquiring OCTA images presents challenges due to the need for specialized sensors and expensive devices. In this paper, we introduce a novel method called TransPro, which can translate the readily available 3D Optical Coherence Tomography (OCT) images into 3D OCTA images without requiring any additional hardware modifications. Our TransPro method is primarily driven by two novel ideas that have been overlooked by prior work. The first idea is derived from a critical observation that the OCTA projection map is generated by averaging pixel values from its corresponding B-scans along the Z-axis. Hence, we introduce a hybrid architecture incorporating a 3D adversarial generative network and a novel Heuristic Contextual Guidance (HCG) module, which effectively maintains the consistency of the generated OCTA images between 3D volumes and projection maps. The second idea is to improve the vessel quality in the translated OCTA projection maps. As a result, we propose a novel Vessel Promoted Guidance (VPG) module to enhance the attention of network on retinal vessels. Experimental results on two datasets demonstrate that our TransPro outperforms state-of-the-art approaches, with relative improvements around 11.4% in MAE, 2.7% in PSNR, 2% in SSIM, 40% in VDE, and 9.1% in VDC compared to the baseline method. The code is available at: https://github.com/ustlsh/TransPro.
- Abstract(参考訳): 光コヒーレンス・トモグラフィー(OCTA)は網膜疾患の臨床的スクリーニングにおいて重要なツールであり、非侵襲的スキャンによる血管の正確な3Dイメージングを可能にする。
しかし、OCTA画像を取得するためのハードウェアベースのアプローチは、特殊なセンサーや高価なデバイスを必要とするため、課題を呈している。
本稿では,手軽に利用できる3D光コヒーレンス・トモグラフィ(OCT)画像から3D OCTA画像に変換できるTransProという新しい手法を提案する。
当社のTransProメソッドは,従来から見過ごされてきた2つの新しいアイデアが中心です。
最初のアイデアは、OCTAプロジェクションマップが対応するBスキャンからZ軸に沿ったピクセル値の平均化によって生成されるという批判的な観察から導かれる。
そこで,我々は,3次元ボリュームと投影マップ間のOCTA画像の一貫性を効果的に維持する,新しいHuuristic Contextual Guidance (HCG)モジュールと3次元逆生成ネットワークを組み込んだハイブリッドアーキテクチャを提案する。
第2のアイデアは、翻訳されたOCTAプロジェクションマップの船体品質を改善することである。
その結果,新しい血管拡張誘導モジュール(VPG)が提案され,網膜血管のネットワークの注目度が向上した。
2つのデータセットの実験結果から、TransProは最先端のアプローチよりも優れており、MAEは11.4%、PSNRは2.7%、SSIMは2%、VDEは40%、VDCは9.1%である。
コードは、https://github.com/ustlsh/TransPro.comで入手できる。
関連論文リスト
- OCTCube: A 3D foundation model for optical coherence tomography that improves cross-dataset, cross-disease, cross-device and cross-modality analysis [11.346324975034051]
OCTCubeは、26,605個の3D OCTボリュームで事前訓練された3Dファンデーションモデルである。
インダクティブとクロスデータセットの両方の設定で8つの網膜疾患を予測する場合、2Dモデルよりも優れています。
また、クロスデバイス予測や、糖尿病や高血圧などの全身疾患の予測に優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-08-20T22:55:19Z) - GaSpCT: Gaussian Splatting for Novel CT Projection View Synthesis [0.6990493129893112]
GaSpCTはコンピュータ・トモグラフィー(CT)スキャンのための新しいプロジェクション・ビューを生成するために使用される新しいビュー合成および3次元シーン表現法である。
我々は,2次元画像投影の限られたセットに基づいて,CTにおける新しいビュー合成を可能にするために,ガウススティングフレームワークを適用した。
我々はParkinson's Progression Markers Initiative (PPMI)データセットから脳CTスキャンを用いてモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-04-04T00:28:50Z) - Accurate Patient Alignment without Unnecessary Imaging Dose via Synthesizing Patient-specific 3D CT Images from 2D kV Images [10.538839084727975]
腫瘍の視認性は2次元平面への患者の解剖学的投射により制限される。
コーンビームCT(CBCT)などの3D-OBI治療室では、CBCTの視野(FOV)は不要な高画像量に制限される。
本稿では, 階層型 ViT ブロックで構築した2次元モデルを用いて, 処理位置から得られた kV 画像から3次元CTを再構成する手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T19:55:03Z) - SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven
Generative Adversarial Networks [6.624839896733912]
本稿では,3次元CT画像の再構成のための自己駆動型生成対向ネットワークモデル(SdCT-GAN)を提案する。
識別器に新しいオートエンコーダ構造を導入することにより、画像の詳細により多くの注意を払っている。
LPIPS評価基準は,既存画像よりも微細な輪郭やテクスチャを定量的に評価できる。
論文 参考訳(メタデータ) (2023-09-10T08:16:02Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - 3D Vessel Reconstruction in OCT-Angiography via Depth Map Estimation [26.489218604637678]
2次元OCTA画像(顔血管造影)における血管のマニュアルまたは自動解析は、一般的に臨床で用いられる。
OCTA画像から船舶深度マップを推定した新しい3次元船舶再構築フレームワークを紹介します。
論文 参考訳(メタデータ) (2021-02-26T16:53:39Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。