論文の概要: GaSpCT: Gaussian Splatting for Novel CT Projection View Synthesis
- arxiv url: http://arxiv.org/abs/2404.03126v1
- Date: Thu, 4 Apr 2024 00:28:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 16:12:59.489270
- Title: GaSpCT: Gaussian Splatting for Novel CT Projection View Synthesis
- Title(参考訳): GaSpCT:新しいCT投影ビュー合成のためのガウススプラッティング
- Authors: Emmanouil Nikolakakis, Utkarsh Gupta, Jonathan Vengosh, Justin Bui, Razvan Marinescu,
- Abstract要約: GaSpCTはコンピュータ・トモグラフィー(CT)スキャンのための新しいプロジェクション・ビューを生成するために使用される新しいビュー合成および3次元シーン表現法である。
我々は,2次元画像投影の限られたセットに基づいて,CTにおける新しいビュー合成を可能にするために,ガウススティングフレームワークを適用した。
我々はParkinson's Progression Markers Initiative (PPMI)データセットから脳CTスキャンを用いてモデルの性能を評価する。
- 参考スコア(独自算出の注目度): 0.6990493129893112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present GaSpCT, a novel view synthesis and 3D scene representation method used to generate novel projection views for Computer Tomography (CT) scans. We adapt the Gaussian Splatting framework to enable novel view synthesis in CT based on limited sets of 2D image projections and without the need for Structure from Motion (SfM) methodologies. Therefore, we reduce the total scanning duration and the amount of radiation dose the patient receives during the scan. We adapted the loss function to our use-case by encouraging a stronger background and foreground distinction using two sparsity promoting regularizers: a beta loss and a total variation (TV) loss. Finally, we initialize the Gaussian locations across the 3D space using a uniform prior distribution of where the brain's positioning would be expected to be within the field of view. We evaluate the performance of our model using brain CT scans from the Parkinson's Progression Markers Initiative (PPMI) dataset and demonstrate that the rendered novel views closely match the original projection views of the simulated scan, and have better performance than other implicit 3D scene representations methodologies. Furthermore, we empirically observe reduced training time compared to neural network based image synthesis for sparse-view CT image reconstruction. Finally, the memory requirements of the Gaussian Splatting representations are reduced by 17% compared to the equivalent voxel grid image representations.
- Abstract(参考訳): 本稿では,コンピュータ・トモグラフィー(CT)スキャンのための新しいプロジェクション・ビューを生成するために,新しいビュー合成と3次元シーン表現法であるGaSpCTを提案する。
我々は2次元画像投影の限られたセットをベースとしたCTにおける新しいビュー合成を可能にするためにガウス・スティング・フレームワークを適用し、SfM(Structure from Motion)手法を必要としない。
そこで本研究では,患者がスキャン中に受ける総スキャン期間と放射線線量を削減する。
本研究は,2種類のレギュラーライザ(ベータ・ロス)と総変量(TV)の損失)を用いて,背景と前景の差異を強くし,損失関数をユースケースに適応させた。
最後に、3次元空間を横断するガウス的位置を、脳の位置が視野内で予測される位置の均一な事前分布を用いて初期化する。
我々は,Parkinson's Progression Markers Initiative (PPMI) データセットの脳CTスキャンを用いてモデルの性能を評価し,レンダリングされた新規ビューが模擬スキャンのオリジナル投影ビューと密に一致し,他の暗黙的な3Dシーン表現手法よりも優れた性能を有することを示す。
さらに,Sparse-view CT画像再構成のためのニューラルネットワークによる画像合成と比較して,トレーニング時間の短縮を実証的に観察した。
最後に、ガウススプラッティング表現のメモリ要求を、等価なボクセルグリッド画像表現と比較して17%削減する。
関連論文リスト
- FewViewGS: Gaussian Splatting with Few View Matching and Multi-stage Training [15.634646420318731]
スパース入力画像を用いた3次元ガウス型新規ビュー合成法を提案する。
本稿では,新しい視点に課せられる整合性制約を考慮した多段階学習手法を提案する。
これは、利用可能なトレーニング画像のマッチングを使用して、新しいビューの生成を監督することで達成される。
論文 参考訳(メタデータ) (2024-11-04T16:21:00Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplatは、多視点画像から3Dガウスアンによってパラメータ化された3Dシーンを再構成できるフィードフォワードモデルである。
提案手法は,推定時にリアルタイムな3次元ガウス再構成を実現する。
この研究は、ポーズフリーの一般化可能な3次元再構成において大きな進歩をもたらし、実世界のシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models [14.043383277622874]
シングラムデータに適した新しい拡散型塗布フレームワークを提案する。
FCDMは既存の手法よりも優れており、SSIMが0.95以上、PSNRが30dB以上、SSIMが33%、PSNRが29%である。
論文 参考訳(メタデータ) (2024-08-26T12:31:38Z) - Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction [9.848266253196307]
Cone-Beam Computed Tomography (CBCT) は医用画像の撮影に欠かせない手法であるが、放射線照射が臨床応用に懸念をもたらす。
本稿では,3次元ガウス空間における特徴分布を表現するために3次元ガウス空間を利用する新しい再構成フレームワーク,DIF-Gaussianを提案する。
2つの公開データセット上でDIF-Gaussianを評価し,従来の最先端手法よりもはるかに優れた再構成性能を示した。
論文 参考訳(メタデータ) (2024-07-01T08:48:04Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation [13.667470059238607]
Sparse-view CTは従来のCTスキャンの放射線線量を減らすための有望な戦略である。
近年、3Dガウスアンは複雑な自然シーンのモデル化に応用されている。
スパース・ビューCT再建の可能性について検討した。
論文 参考訳(メタデータ) (2023-12-25T09:47:33Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
我々は、文字の新たなビューをリアルタイムに合成するための新しいアプローチ、GPS-Gaussianを提案する。
提案手法は,スパースビューカメラ設定下での2K解像度のレンダリングを可能にする。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
CT検査では投射回数を直感的に減らすことで放射線線量を大幅に減少させることができる。
疎視データを用いた従来のディープラーニング技術では、教師付き方法でネットワークをトレーニングするためにスパースビュー/フルビューCTイメージペアが必要である。
スパース・ビューCT再構成のための非教師なしスコアベース生成モデルについて検討した。
論文 参考訳(メタデータ) (2022-11-25T06:49:18Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
ニューラルレイディアンス場(NeRF)に基づく1枚の360度RGB-D画像から新しいビューを合成する方法を提案する。
実験により,提案手法は実世界と実世界の両方でシーンの特徴を保ちながら,可塑性な新規なビューを合成できることが実証された。
論文 参考訳(メタデータ) (2022-03-18T13:49:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。