CoGANPPIS: A Coevolution-enhanced Global Attention Neural Network for
Protein-Protein Interaction Site Prediction
- URL: http://arxiv.org/abs/2303.06945v4
- Date: Sun, 24 Sep 2023 04:09:01 GMT
- Title: CoGANPPIS: A Coevolution-enhanced Global Attention Neural Network for
Protein-Protein Interaction Site Prediction
- Authors: Jiaxing Guo, Xuening Zhu, Zixin Hu, Xiaoxi Hu
- Abstract summary: We propose a coevolution-enhanced global attention neural network, a sequence-based deep learning model for PPIs prediction.
CoGANPPIS utilizes three layers in parallel for feature extraction.
Our proposed model achieves the state-of-the-art performance.
- Score: 0.9217021281095907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Protein-protein interactions are of great importance in biochemical
processes. Accurate prediction of protein-protein interaction sites (PPIs) is
crucial for our understanding of biological mechanism. Although numerous
approaches have been developed recently and achieved gratifying results, there
are still two limitations: (1) Most existing models have excavated a number of
useful input features, but failed to take coevolutionary features into account,
which could provide clues for inter-residue relationships; (2) The
attention-based models only allocate attention weights for neighboring
residues, instead of doing it globally, which may limit the model's prediction
performance since some residues being far away from the target residues might
also matter.
We propose a coevolution-enhanced global attention neural network, a
sequence-based deep learning model for PPIs prediction, called CoGANPPIS.
Specifically, CoGANPPIS utilizes three layers in parallel for feature
extraction: (1) Local-level representation aggregation layer, which aggregates
the neighboring residues' features as the local feature representation; (2)
Global-level representation learning layer, which employs a novel
coevolution-enhanced global attention mechanism to allocate attention weights
to all residues on the same protein sequences; (3) Coevolutionary information
learning layer, which applies CNN & pooling to coevolutionary information to
obtain the coevolutionary profile representation. Then, the three outputs are
concatenated and passed into several fully connected layers for the final
prediction. Extensive experiments on two benchmark datasets have been
conducted, demonstrating that our proposed model achieves the state-of-the-art
performance.
Related papers
- Autoregressive Enzyme Function Prediction with Multi-scale Multi-modality Fusion [11.278610817877578]
We introduce MAPred, a novel multi-modality and multi-scale model designed to autoregressively predict the EC number of proteins.
MAPred integrates both the primary amino acid sequence and the 3D tokens of proteins, employing a dual-pathway approach to capture comprehensive protein characteristics.
Evaluations on benchmark datasets, including New-392, Price, and New-815, demonstrate that our method outperforms existing models.
arXiv Detail & Related papers (2024-08-11T08:28:43Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for
Highly Accurate Protein-Ligand Binding Affinity Prediction [0.0]
We present a novel deep learning architecture consisting of a 3-dimensional convolutional neural network and two graph convolutional networks.
HAC-Net obtains state-of-the-art results on the PDBbind v.2016 core set.
We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction.
arXiv Detail & Related papers (2022-12-23T16:14:53Z) - Protein 3D structure-based neural networks highly improve the accuracy
in compound-protein binding affinity prediction [7.059949221160259]
We develop Fast Evolutional Attention and Thoroughgoing-graph Neural Networks (FeatNN) to facilitate the application of protein 3D structure information for predicting compound-protein binding affinities (CPAs)
FeatNN considerably outperforms various state-of-the-art baselines in CPA prediction with the Pearson value elevated by about 35.7%.
arXiv Detail & Related papers (2022-03-30T00:44:15Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Structure-aware Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity [52.67037774136973]
Drug discovery often relies on the successful prediction of protein-ligand binding affinity.
Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes.
We propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool)
arXiv Detail & Related papers (2021-07-21T03:34:09Z) - Understanding the Distributions of Aggregation Layers in Deep Neural
Networks [8.784438985280092]
aggregation functions as an important mechanism for consolidating deep features into a more compact representation.
In particular, the proximity of global aggregation layers to the output layers of DNNs mean that aggregated features have a direct influence on the performance of a deep net.
We propose a novel mathematical formulation for analytically modelling the probability distributions of output values of layers involved with deep feature aggregation.
arXiv Detail & Related papers (2021-07-09T14:23:57Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.