Autoregressive Enzyme Function Prediction with Multi-scale Multi-modality Fusion
- URL: http://arxiv.org/abs/2408.06391v1
- Date: Sun, 11 Aug 2024 08:28:43 GMT
- Title: Autoregressive Enzyme Function Prediction with Multi-scale Multi-modality Fusion
- Authors: Dingyi Rong, Wenzhuo Zheng, Bozitao Zhong, Zhouhan Lin, Liang Hong, Ning Liu,
- Abstract summary: We introduce MAPred, a novel multi-modality and multi-scale model designed to autoregressively predict the EC number of proteins.
MAPred integrates both the primary amino acid sequence and the 3D tokens of proteins, employing a dual-pathway approach to capture comprehensive protein characteristics.
Evaluations on benchmark datasets, including New-392, Price, and New-815, demonstrate that our method outperforms existing models.
- Score: 11.278610817877578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of enzyme function is crucial for elucidating biological mechanisms and driving innovation across various sectors. Existing deep learning methods tend to rely solely on either sequence data or structural data and predict the EC number as a whole, neglecting the intrinsic hierarchical structure of EC numbers. To address these limitations, we introduce MAPred, a novel multi-modality and multi-scale model designed to autoregressively predict the EC number of proteins. MAPred integrates both the primary amino acid sequence and the 3D tokens of proteins, employing a dual-pathway approach to capture comprehensive protein characteristics and essential local functional sites. Additionally, MAPred utilizes an autoregressive prediction network to sequentially predict the digits of the EC number, leveraging the hierarchical organization of EC classifications. Evaluations on benchmark datasets, including New-392, Price, and New-815, demonstrate that our method outperforms existing models, marking a significant advance in the reliability and granularity of protein function prediction within bioinformatics.
Related papers
- SeqProFT: Applying LoRA Finetuning for Sequence-only Protein Property Predictions [8.112057136324431]
This study employs the LoRA method to perform end-to-end fine-tuning of the ESM-2 model.
A multi-head attention mechanism is integrated into the downstream network to combine sequence features with contact map information.
arXiv Detail & Related papers (2024-11-18T12:40:39Z) - MeToken: Uniform Micro-environment Token Boosts Post-Translational Modification Prediction [65.33218256339151]
Post-translational modifications (PTMs) profoundly expand the complexity and functionality of the proteome.
Existing computational approaches predominantly focus on protein sequences to predict PTM sites, driven by the recognition of sequence-dependent motifs.
We introduce the MeToken model, which tokenizes the micro-environment of each acid, integrating both sequence and structural information into unified discrete tokens.
arXiv Detail & Related papers (2024-11-04T07:14:28Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
We present the first unified benchmark NovoBench for emphde novo peptide sequencing.
It comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics.
Recent methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $pi$-HelixNovo are integrated into our framework.
arXiv Detail & Related papers (2024-06-16T08:23:21Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering
the Language of Protein [76.18058946124111]
We propose a unified protein language model, xTrimoPGLM, to address protein understanding and generation tasks simultaneously.
xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories.
It can also generate de novo protein sequences following the principles of natural ones, and can perform programmable generation after supervised fine-tuning.
arXiv Detail & Related papers (2024-01-11T15:03:17Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - DeepGATGO: A Hierarchical Pretraining-Based Graph-Attention Model for
Automatic Protein Function Prediction [4.608328575930055]
Automatic protein function prediction (AFP) is classified as a large-scale multi-label classification problem.
Currently, popular methods primarily combine protein-related information and Gene Ontology (GO) terms to generate final functional predictions.
We propose a sequence-based hierarchical prediction method, DeepGATGO, which processes protein sequences and GO term labels hierarchically.
arXiv Detail & Related papers (2023-07-24T07:01:32Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
This work provides a benchmark analysis of peptide encoding with advanced deep learning models.
It serves as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
arXiv Detail & Related papers (2023-07-17T00:43:33Z) - CoGANPPIS: A Coevolution-enhanced Global Attention Neural Network for
Protein-Protein Interaction Site Prediction [0.9217021281095907]
We propose a coevolution-enhanced global attention neural network, a sequence-based deep learning model for PPIs prediction.
CoGANPPIS utilizes three layers in parallel for feature extraction.
Our proposed model achieves the state-of-the-art performance.
arXiv Detail & Related papers (2023-03-13T09:27:34Z) - ECRECer: Enzyme Commission Number Recommendation and Benchmarking based
on Multiagent Dual-core Learning [1.4114970711442507]
We report ECRECer, a cloud platform for accurately predicting EC numbers based on novel deep learning techniques.
To build ECRECer, we evaluate different protein representation methods and adopt a protein language model for protein sequence embedding.
ECRECer delivers the highest performance, which improves accuracy and F1 score by 70% and 20% over the state-of-the-art, respectively.
arXiv Detail & Related papers (2022-02-08T04:00:49Z) - Deep Learning of High-Order Interactions for Protein Interface
Prediction [58.164371994210406]
We propose to formulate the protein interface prediction as a 2D dense prediction problem.
We represent proteins as graphs and employ graph neural networks to learn node features.
We incorporate high-order pairwise interactions to generate a 3D tensor containing different pairwise interactions.
arXiv Detail & Related papers (2020-07-18T05:39:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.