論文の概要: Quantile Online Learning for Semiconductor Failure Analysis
- arxiv url: http://arxiv.org/abs/2303.07062v1
- Date: Mon, 13 Mar 2023 12:34:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 15:19:43.624507
- Title: Quantile Online Learning for Semiconductor Failure Analysis
- Title(参考訳): 半導体故障解析のための質的オンライン学習
- Authors: Bangjian Zhou, Pan Jieming, Maheswari Sivan, Aaron Voon-Yew Thean, J.
Senthilnath
- Abstract要約: 本稿では,半導体故障解析のための新しい量子オンライン学習について述べる。
提案手法は半導体デバイスレベルの欠陥,FinFETブリッジ欠陥,GAA-FETブリッジ欠陥,GAA-FET転位欠陥,および公開データベースSECOMに適用される。
提案手法は全体の86.66%の精度を達成し,GAA-FET転位欠陥データセットの15.50%を改善する2番目に高い既存手法と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With high device integration density and evolving sophisticated device
structures in semiconductor chips, detecting defects becomes elusive and
complex. Conventionally, machine learning (ML)-guided failure analysis is
performed with offline batch mode training. However, the occurrence of new
types of failures or changes in the data distribution demands retraining the
model. During the manufacturing process, detecting defects in a single-pass
online fashion is more challenging and favoured. This paper focuses on novel
quantile online learning for semiconductor failure analysis. The proposed
method is applied to semiconductor device-level defects: FinFET bridge defect,
GAA-FET bridge defect, GAA-FET dislocation defect, and a public database:
SECOM. From the obtained results, we observed that the proposed method is able
to perform better than the existing methods. Our proposed method achieved an
overall accuracy of 86.66% and compared with the second-best existing method it
improves 15.50% on the GAA-FET dislocation defect dataset.
- Abstract(参考訳): 半導体チップにおける高デバイス統合密度と高度なデバイス構造が進化するにつれ、欠陥の検出は解明され複雑になる。
従来、機械学習(ML)誘導型障害解析はオフラインバッチモードのトレーニングで行われている。
しかし、新しいタイプの障害の発生やデータ分散の変化は、モデルの再トレーニングを要求する。
製造過程において、単一パスのオンライン方式で欠陥を検出することはより困難で好まれる。
本稿では,半導体故障解析のための新しい量子オンライン学習について述べる。
提案手法は半導体デバイスレベルの欠陥,FinFETブリッジ欠陥,GAA-FETブリッジ欠陥,GAA-FET転位欠陥,および公開データベースSECOMに適用される。
得られた結果から,提案手法が既存の手法よりも優れた性能を発揮することを見出した。
提案手法は全体の86.66%の精度を達成し,GAA-FET転位欠陥データセットの15.50%を改善する2番目に高い既存手法と比較した。
関連論文リスト
- Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification [52.251569042852815]
オンライン更新毎にクローズドフォームソリューションを備えたオンライン広範学習システムフレームワークを導入する。
我々は,効果的な重み推定アルゴリズムと効率的なオンライン更新戦略を設計する。
我々のフレームワークは、コンセプトドリフトを伴うデータストリームシナリオに自然に拡張され、最先端のベースラインを超えます。
論文 参考訳(メタデータ) (2025-01-28T13:21:59Z) - Defect Detection Network In PCB Circuit Devices Based on GAN Enhanced YOLOv11 [1.6775954077761863]
本研究では, GANを用いた改良YOLOv11モデルを用いたプリント基板(PCB)の表面欠陥検出手法を提案する。
このアプローチは、欠落穴、ラットの噛み傷、オープンサーキット、ショートサーキット、バー、仮想溶接の6つの一般的な欠陥タイプを特定することに焦点を当てている。
強化されたYOLOv11モデルはPCB欠陥データセットで評価され、精度、リコール、堅牢性を大幅に改善した。
論文 参考訳(メタデータ) (2025-01-12T17:26:24Z) - An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection [0.11184789007828977]
本研究は,半導体欠陥検査におけるタスクに依存しないメタラーニング手法を提案する。
新しい欠陥クラスとスケールの漸進的な追加を可能にし、より堅牢で一般化されたモデルを作成する。
我々は、ADIとAEIの2つのプロセスステップに対して、実際のレジストウェハSEM(Scanning Electron Microscopy)データセットを用いて、我々のアプローチをベンチマークした。
論文 参考訳(メタデータ) (2024-07-17T16:41:22Z) - Continual learning for surface defect segmentation by subnetwork
creation and selection [55.2480439325792]
破滅的な忘れを伴わずにセグメンテーションタスクを実行する,新たな連続的(あるいは寿命の長い)学習アルゴリズムを導入する。
この方法は、2つの異なる表面欠陥分割問題に適用され、漸進的に学習される。
当社のアプローチでは,すべてのトレーニングデータ(すべての欠陥)を同時に見る場合,共同トレーニングと同等の結果が得られます。
論文 参考訳(メタデータ) (2023-12-08T15:28:50Z) - A Reusable AI-Enabled Defect Detection System for Railway Using
Ensembled CNN [5.381374943525773]
欠陥検出は、鉄道システムの信頼性を確保するために不可欠である。
現在のアプローチは、CNNのような単一のディープラーニングモデルに依存している。
再利用可能なAI対応欠陥検出手法を提案する。
論文 参考訳(メタデータ) (2023-11-24T19:45:55Z) - SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor
Defect Classification and Segmentation [0.11999555634662631]
この研究は拡散モデルを用いて半導体欠陥パターンを正確に検出し、正確にセグメント化する最初の実演である。
提案手法は,mAP全体のこれまでの成果よりも優れており,ほぼすべての欠陥クラスに対して比較的優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-17T17:53:36Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
本稿では,DKAN(Dual Knowledge Align Network)と呼ばれる新しい知識蒸留ネットワークを提案する。
提案したDKAN法は,事前学習型ファインタニング伝達学習パラダイムを踏襲し,ファインタニングのための知識蒸留フレームワークを設計した。
Few-shot NEU-DETデータセットをインクリメンタルに実験した結果、DKANは様々なシーンで他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-09-01T15:08:44Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
本稿では,誤りシミュレーションエンジンを用いて,コナールニューラルネットワーク(CNN)の信頼性解析のためのフレームワークを提案する。
これらの誤差モデルは、故障によって誘導されるCNN演算子の出力の破損パターンに基づいて定義される。
提案手法は,SASSIFIの欠陥効果の約99%の精度と,限定的なエラーモデルのみを実装した44倍から63倍までのスピードアップを実現する。
論文 参考訳(メタデータ) (2022-06-04T19:45:02Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。