論文の概要: Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification
- arxiv url: http://arxiv.org/abs/2501.16932v1
- Date: Tue, 28 Jan 2025 13:21:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:40:56.421913
- Title: Online-BLS: An Accurate and Efficient Online Broad Learning System for Data Stream Classification
- Title(参考訳): Online-BLS:データストリーム分類のための高精度かつ効率的なオンラインブロードラーニングシステム
- Authors: Chunyu Lei, Guang-Ze Chen, C. L. Philip Chen, Tong Zhang,
- Abstract要約: オンライン更新毎にクローズドフォームソリューションを備えたオンライン広範学習システムフレームワークを導入する。
我々は,効果的な重み推定アルゴリズムと効率的なオンライン更新戦略を設計する。
我々のフレームワークは、コンセプトドリフトを伴うデータストリームシナリオに自然に拡張され、最先端のベースラインを超えます。
- 参考スコア(独自算出の注目度): 52.251569042852815
- License:
- Abstract: The state-of-the-art online learning models generally conduct a single online gradient descent when a new sample arrives and thus suffer from suboptimal model weights. To this end, we introduce an online broad learning system framework with closed-form solutions for each online update. Different from employing existing incremental broad learning algorithms for online learning tasks, which tend to incur degraded accuracy and expensive online update overhead, we design an effective weight estimation algorithm and an efficient online updating strategy to remedy the above two deficiencies, respectively. Specifically, an effective weight estimation algorithm is first developed by replacing notorious matrix inverse operations with Cholesky decomposition and forward-backward substitution to improve model accuracy. Second, we devise an efficient online updating strategy that dramatically reduces online update time. Theoretical analysis exhibits the splendid error bound and low time complexity of our model. The most popular test-then-training evaluation experiments on various real-world datasets prove its superiority and efficiency. Furthermore, our framework is naturally extended to data stream scenarios with concept drift and exceeds state-of-the-art baselines.
- Abstract(参考訳): 最先端のオンライン学習モデルは、新しいサンプルが到着すると、単一のオンライン勾配降下を行い、その結果、最適なモデルウェイトに悩まされる。
この目的のために、オンライン更新毎にクローズドフォームソリューションを備えたオンライン広範学習システムフレームワークを導入する。
オンライン学習タスクに既存の漸進的広範学習アルゴリズムを採用するのと異なり、劣化した精度と高価なオンライン更新オーバーヘッドを発生させる傾向があるため、我々は、上記の2つの欠陥を補うために、効果的な重み推定アルゴリズムと効率的なオンライン更新戦略を設計する。
具体的には、モデル精度を向上させるために、悪名高い行列逆演算をチョレスキー分解と前方後方置換に置き換えて、効果的な重み推定アルゴリズムを開発した。
第2に、オンライン更新時間を劇的に短縮する効率的なオンライン更新戦略を考案する。
理論的解析は,我々のモデルにおいて,素晴らしい誤差境界と低時間複雑さを示す。
様々な実世界のデータセット上で最も人気のあるテストテーマトレーニング評価実験は、その優位性と効率性を証明している。
さらに、我々のフレームワークは、コンセプトドリフトを伴うデータストリームシナリオに自然に拡張され、最先端のベースラインを超えます。
関連論文リスト
- Towards An Online Incremental Approach to Predict Students Performance [0.8287206589886879]
本稿では,オンライン分類器を更新するためのメモリベースのオンラインインクリメンタル学習手法を提案する。
提案手法は,現在の最先端技術と比較して10%近く向上し,モデル精度の顕著な向上を実現している。
論文 参考訳(メタデータ) (2024-05-03T17:13:26Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Finetuning Offline World Models in the Real World [13.46766121896684]
強化学習(RL)はデータ非効率で、実際のロボットの訓練を困難にしている。
オフラインのRLは、オンラインインタラクションなしで既存のデータセットのRLポリシーをトレーニングするためのフレームワークとして提案されている。
本研究では,実ロボットで収集したオフラインデータを用いて世界モデルを事前学習し,学習モデルを用いて計画して収集したオンラインデータ上でモデルを微調整する問題を考察する。
論文 参考訳(メタデータ) (2023-10-24T17:46:12Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - Bilevel Online Deep Learning in Non-stationary Environment [4.565872584112864]
Bilevel Online Deep Learning (BODL)フレームワークは、双方向最適化戦略とオンラインアンサンブル分類器を組み合わせたフレームワークである。
概念ドリフトが検出されると、BODLアルゴリズムはバイレベル最適化によりモデルパラメータを適応的に更新し、大きなドリフトを回避し、正の転送を促進する。
論文 参考訳(メタデータ) (2022-01-25T11:05:51Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
オフライン学習を必要とせず、簡単な効果的なオンライン学習手法を提案する。
これは、モデルが以前見たオブジェクトに関する知識を記憶するための、内蔵されたメモリ保持メカニズムを可能にする。
我々は、RT-MDNetにおける多層パーセプトロンと、DiMPにおける畳み込みニューラルネットワークの追跡のためのオンライン学習ファミリーにおける2つのネットワークに基づくアプローチを評価する。
論文 参考訳(メタデータ) (2021-12-28T06:51:18Z) - Fast Class-wise Updating for Online Hashing [196.14748396106955]
本稿では,FCOH(Fast Class-wise Updating for Online Hashing)と呼ばれる新しいオンラインハッシュ方式を提案する。
クラスワイズ更新法は、バイナリコード学習を分解し、代わりにクラスワイズ方式でハッシュ関数を更新する。
オンラインの効率をより高めるために,異なるバイナリ制約を独立に扱うことで,オンライントレーニングを高速化する半緩和最適化を提案する。
論文 参考訳(メタデータ) (2020-12-01T07:41:54Z) - Online Passive-Aggressive Total-Error-Rate Minimization [1.370633147306388]
オンライン・パッシブ・アグレッシブ・ラーニング(PA)と総エラーレート最小化(TER)を二項分類に活用する新しいオンライン・ラーニング・アルゴリズムを提案する。
実験結果から,提案したPATERアルゴリズムは,実世界のデータセットにおける既存の最先端オンライン学習アルゴリズムよりも,効率と効率の面で優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-02-05T13:10:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。