Optimization of the location and design of urban green spaces
- URL: http://arxiv.org/abs/2303.07202v1
- Date: Mon, 13 Mar 2023 15:37:21 GMT
- Title: Optimization of the location and design of urban green spaces
- Authors: Caroline Leboeuf and Margarida Carvalho and Yan Kestens and Beno\^it
Thierry
- Abstract summary: This work showcases the application of classic tools from Operations Research to assist decision-makers to improve parks' accessibility, distribution and design.
We present a two-stage fair facility location and design model, which serves as a template model to assist public decision-makers at the city-level for the planning of urban green spaces.
- Score: 3.58439716487063
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent promotion of sustainable urban planning combined with a growing
need for public interventions to improve well-being and health have led to an
increased collective interest for green spaces in and around cities. In
particular, parks have proven a wide range of benefits in urban areas. This
also means inequities in park accessibility may contribute to health
inequities. In this work, we showcase the application of classic tools from
Operations Research to assist decision-makers to improve parks' accessibility,
distribution and design. Given the context of public decision-making, we are
particularly concerned with equity and environmental justice, and are focused
on an advanced assessment of users' behavior through a spatial interaction
model. We present a two-stage fair facility location and design model, which
serves as a template model to assist public decision-makers at the city-level
for the planning of urban green spaces. The first-stage of the optimization
model is about the optimal city-budget allocation to neighborhoods based on a
data exposing inequality attributes. The second-stage seeks the optimal
location and design of parks for each neighborhood, and the objective consists
of maximizing the total expected probability of individuals visiting parks. We
show how to reformulate the latter as a mixed-integer linear program. We
further introduce a clustering method to reduce the size of the problem and
determine a close to optimal solution within reasonable time. The model is
tested using the case study of the city of Montreal and comparative results are
discussed in detail to justify the performance of the model.
Related papers
- Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - CityPulse: Fine-Grained Assessment of Urban Change with Street View Time
Series [12.621355888239359]
Urban transformations have profound societal impact on both individuals and communities at large.
We propose an end-to-end change detection model to effectively capture physical alterations in the built environment at scale.
Our approach has the potential to supplement existing dataset and serve as a fine-grained and accurate assessment of urban change.
arXiv Detail & Related papers (2024-01-02T08:57:09Z) - Geo-located Aspect Based Sentiment Analysis (ABSA) for Crowdsourced
Evaluation of Urban Environments [0.0]
We develop an ABSA model capable of extracting urban aspects contained within geo-located textual urban appraisals, along with corresponding aspect sentiment classification.
Our model achieves significant improvement in prediction accuracy on urban reviews, for both Aspect Term Extraction (ATE) and Aspect Sentiment Classification (ASC) tasks.
For demonstrative analysis, positive and negative urban aspects across Boston are spatially visualized.
arXiv Detail & Related papers (2023-12-19T15:37:27Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - Decoding Urban-health Nexus: Interpretable Machine Learning Illuminates
Cancer Prevalence based on Intertwined City Features [1.4010916616909745]
Age, minority status, and population density are among the most influential factors in cancer prevalence.
Increasing green space and reducing developed areas and total emissions could alleviate cancer prevalence.
arXiv Detail & Related papers (2023-06-20T18:56:37Z) - Generative methods for Urban design and rapid solution space exploration [13.222198221605701]
This research introduces an implementation of a tensor-field-based generative urban modeling toolkit.
Our method encodes contextual constraints such as waterfront edges, terrain, view-axis, existing streets, landmarks, and non-geometric design inputs.
This allows users to generate many, diverse urban fabric configurations that resemble real-world cities with very few model inputs.
arXiv Detail & Related papers (2022-12-13T17:58:02Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
We develop a novel human-instructed deep hierarchical generative model to generate optimal urban plans.
The first stage is to label the grids of a target area with latent functionalities to discover functional zones.
The second stage is to perceive the planning requirements to form urban functionality projections.
The third stage is to leverage multi-attentions to model the zone-zone peer dependencies of the functionality projections to generate grid-level land-use configurations.
arXiv Detail & Related papers (2022-12-01T23:06:41Z) - This Must Be the Place: Predicting Engagement of Online Communities in a
Large-scale Distributed Campaign [70.69387048368849]
We study the behavior of communities with millions of active members.
We develop a hybrid model, combining textual cues, community meta-data, and structural properties.
We demonstrate the applicability of our model through Reddit's r/place a large-scale online experiment.
arXiv Detail & Related papers (2022-01-14T08:23:16Z) - Dynamic Urban Planning: an Agent-Based Model Coupling Mobility Mode and
Housing Choice. Use case Kendall Square [5.620109882646823]
This paper presents an agent-based model that characterizes citizens' behavioural patterns with respect to housing and mobility choice.
The realistic identification and representation of the criteria that affect this decision-making process will help understand and evaluate the impacts of potential housing incentives.
arXiv Detail & Related papers (2021-06-28T10:54:44Z) - Entropy as a measure of attractiveness and socioeconomic complexity in
Rio de Janeiro metropolitan area [52.77024349608834]
We use a mobile phone dataset and an entropy-based metric to measure the attractiveness of a location.
The results show that the attractiveness of a given location measured by entropy is an important descriptor of the socioeconomic status of the location.
arXiv Detail & Related papers (2020-03-23T15:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.