論文の概要: The Science of Detecting LLM-Generated Texts
- arxiv url: http://arxiv.org/abs/2303.07205v2
- Date: Mon, 20 Mar 2023 08:59:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 22:49:42.986968
- Title: The Science of Detecting LLM-Generated Texts
- Title(参考訳): LLM生成テキスト検出の科学
- Authors: Ruixiang Tang, Yu-Neng Chuang, Xia Hu
- Abstract要約: 大型言語モデル(LLMs)の出現は、人間によって書かれたテキストとほとんど区別できないテキストの作成につながった。
このことが、誤報の拡散や教育制度の混乱など、このようなテキストの誤用の可能性への懸念を引き起こしている。
本研究の目的は,既存のLLM生成テキスト検出技術の概要を提供し,言語生成モデルの制御と制御を強化することである。
- 参考スコア(独自算出の注目度): 47.49470179549773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models (LLMs) has resulted in the production
of LLM-generated texts that is highly sophisticated and almost
indistinguishable from texts written by humans. However, this has also sparked
concerns about the potential misuse of such texts, such as spreading
misinformation and causing disruptions in the education system. Although many
detection approaches have been proposed, a comprehensive understanding of the
achievements and challenges is still lacking. This survey aims to provide an
overview of existing LLM-generated text detection techniques and enhance the
control and regulation of language generation models. Furthermore, we emphasize
crucial considerations for future research, including the development of
comprehensive evaluation metrics and the threat posed by open-source LLMs, to
drive progress in the area of LLM-generated text detection.
- Abstract(参考訳): 大規模言語モデル(LLMs)の出現は、高度に洗練され、人間によって書かれたテキストとほとんど区別できないLLM生成のテキストを生み出した。
しかし、これは、誤報の拡散や教育制度の混乱など、そのような文章の誤用の可能性への懸念も引き起こしている。
多くの検出アプローチが提案されているが、成果と課題の包括的理解はまだ不足している。
本調査は,既存のllm生成テキスト検出手法の概要と,言語生成モデルの制御と規制を強化することを目的とする。
さらに,LLM 生成テキスト検出の分野における進歩を促進するため,総合的な評価指標の開発や,オープンソースの LLM による脅威など,今後の研究の重要課題を強調した。
関連論文リスト
- SEFD: Semantic-Enhanced Framework for Detecting LLM-Generated Text [12.639191350218528]
大規模言語モデル(LLM)生成テキスト(SEFD)を検出するための新しい意味強化フレームワークを提案する。
本フレームワークは,検索技術と従来の検出手法を体系的に統合することにより,既存の検出方法を改善する。
本稿では,オンラインフォーラムやQ&Aプラットフォームなど,現実のアプリケーションに共通するシーケンシャルテキストシナリオにおけるアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-11-17T20:13:30Z) - Understanding the Effects of Human-written Paraphrases in LLM-generated Text Detection [7.242609314791262]
Human & LLM Paraphrase Collection (HLPC)は、人間の文章とパラフレーズを組み込んだ第一種データセットである。
我々は,人書きパラフレーズ,GPTとOPTのLLM生成文書,DIPPERとBARTのLLM生成パラフレーズを組み込んだ分類実験を行った。
以上の結果から,人文パラフレーズの含浸がLLM検出性能に大きな影響を与え,TPR@1%FPRが促進され,AUROCのトレードオフや精度が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-06T10:06:21Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
本研究では,大言語モデル(LLM)の制約付きテキスト生成について検討する。
本研究は主に,制約を語彙型,構造型,関係型に分類するオープンソース LLM に重点を置いている。
その結果、LLMの能力と不足を照らし、制約を取り入れ、制約付きテキスト生成における将来の発展に対する洞察を提供する。
論文 参考訳(メタデータ) (2023-10-25T03:58:49Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions [39.36381851190369]
LLM生成テキストを検出できる検出器を開発する必要がある。
このことは、LLMが生成するコンテンツの有害な影響から、LLMの潜在的な誤用や、芸術的表現やソーシャルネットワークのような保護領域の軽減に不可欠である。
この検出器技術は、ウォーターマーキング技術、統計ベースの検出器、神経ベース検出器、そして人間の支援手法の革新によって、最近顕著な進歩をみせている。
論文 参考訳(メタデータ) (2023-10-23T09:01:13Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。