論文の概要: Understanding the Effects of Human-written Paraphrases in LLM-generated Text Detection
- arxiv url: http://arxiv.org/abs/2411.03806v1
- Date: Wed, 06 Nov 2024 10:06:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:47.741620
- Title: Understanding the Effects of Human-written Paraphrases in LLM-generated Text Detection
- Title(参考訳): LLMテキスト検出における人書きパラフレーズの効果の理解
- Authors: Hiu Ting Lau, Arkaitz Zubiaga,
- Abstract要約: Human & LLM Paraphrase Collection (HLPC)は、人間の文章とパラフレーズを組み込んだ第一種データセットである。
我々は,人書きパラフレーズ,GPTとOPTのLLM生成文書,DIPPERとBARTのLLM生成パラフレーズを組み込んだ分類実験を行った。
以上の結果から,人文パラフレーズの含浸がLLM検出性能に大きな影響を与え,TPR@1%FPRが促進され,AUROCのトレードオフや精度が向上する可能性が示唆された。
- 参考スコア(独自算出の注目度): 7.242609314791262
- License:
- Abstract: Natural Language Generation has been rapidly developing with the advent of large language models (LLMs). While their usage has sparked significant attention from the general public, it is important for readers to be aware when a piece of text is LLM-generated. This has brought about the need for building models that enable automated LLM-generated text detection, with the aim of mitigating potential negative outcomes of such content. Existing LLM-generated detectors show competitive performances in telling apart LLM-generated and human-written text, but this performance is likely to deteriorate when paraphrased texts are considered. In this study, we devise a new data collection strategy to collect Human & LLM Paraphrase Collection (HLPC), a first-of-its-kind dataset that incorporates human-written texts and paraphrases, as well as LLM-generated texts and paraphrases. With the aim of understanding the effects of human-written paraphrases on the performance of state-of-the-art LLM-generated text detectors OpenAI RoBERTa and watermark detectors, we perform classification experiments that incorporate human-written paraphrases, watermarked and non-watermarked LLM-generated documents from GPT and OPT, and LLM-generated paraphrases from DIPPER and BART. The results show that the inclusion of human-written paraphrases has a significant impact of LLM-generated detector performance, promoting TPR@1%FPR with a possible trade-off of AUROC and accuracy.
- Abstract(参考訳): 自然言語生成は、大規模言語モデル(LLM)の出現とともに急速に発展してきた。
それらの使用は、一般大衆から大きな注目を集めているが、読者は、あるテキストがLLM生成されていることに気付くことが重要である。
これにより、LLM生成したテキストの自動検出を可能にするモデルの構築が必要となり、そのようなコンテンツの潜在的なネガティブな結果を軽減することを目的としている。
既存のLLM生成検出器は, LLM生成テキストと人文テキストを区別する上で, 競合する性能を示すが, パラフレーズテキストを考慮すれば, この性能は低下する可能性が高い。
本研究では,人文テキストとパラフレーズとLLM生成テキストとパラフレーズを組み込んだファースト・オブ・イットキンドデータセットであるHuman & LLM Paraphrase Collection(HLPC)を収集する新たなデータ収集戦略を考案した。
人書きパラフレーズが最先端のLLM生成テキスト検出器OpenAI RoBERTaと透かし検出器の性能に与える影響を理解することを目的として, 人書きパラフレーズ, GPT, OPTの透かしおよび非透かしLPM生成文書, DIPPER, BARTのLCM生成パラフレーズを含む分類実験を行った。
以上の結果から,人文パラフレーズの含浸がLLM検出性能に大きな影響を与え,TPR@1%FPRの促進とAUROCのトレードオフ,精度の向上が示唆された。
関連論文リスト
- GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には、コンピュータビジョンに適応したDETRのような検出モデルと組み合わせて、微調整の汎用LLMを用いて、テキスト内で人工的に生成された間隔をローカライズする。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
大型言語モデル (LLM) は人間の好むテキストを生成する。
本稿では,これらのモデルで共有される共通特性について述べる。
報奨モデルの検出能力をさらに向上する2つのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T17:38:33Z) - TM-TREK at SemEval-2024 Task 8: Towards LLM-Based Automatic Boundary Detection for Human-Machine Mixed Text [0.0]
本稿では,人文と機械生成の混合テキストにおける境界を識別する大規模言語モデルの能力について検討する。
LLMのアンサンブルモデルは,SemEval'24コンペティションタスク8の「Human-Machine Mixed Text Detection」サブタスクにおいて,第1位を獲得した。
論文 参考訳(メタデータ) (2024-04-01T03:54:42Z) - LLM-Detector: Improving AI-Generated Chinese Text Detection with
Open-Source LLM Instruction Tuning [4.328134379418151]
既存のAI生成テキスト検出モデルでは、ドメイン内のオーバーフィットが難しくなる。
LLM-Detectorは文書レベルと文レベルのテキスト検出のための新しい手法である。
論文 参考訳(メタデータ) (2024-02-02T05:54:12Z) - A Survey on LLM-Generated Text Detection: Necessity, Methods, and Future Directions [39.36381851190369]
LLM生成テキストを検出できる検出器を開発する必要がある。
このことは、LLMが生成するコンテンツの有害な影響から、LLMの潜在的な誤用や、芸術的表現やソーシャルネットワークのような保護領域の軽減に不可欠である。
この検出器技術は、ウォーターマーキング技術、統計ベースの検出器、神経ベース検出器、そして人間の支援手法の革新によって、最近顕著な進歩をみせている。
論文 参考訳(メタデータ) (2023-10-23T09:01:13Z) - Source Attribution for Large Language Model-Generated Data [57.85840382230037]
合成テキストの生成に寄与したデータプロバイダを特定することで、ソース属性を実行できることが不可欠である。
我々はこの問題を透かしによって取り組めることを示した。
本稿では,アルゴリズム設計により,これらの重要な特性を満足する情報源属性フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-01T12:02:57Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - The Science of Detecting LLM-Generated Texts [47.49470179549773]
大型言語モデル(LLMs)の出現は、人間によって書かれたテキストとほとんど区別できないテキストの作成につながった。
このことが、誤報の拡散や教育制度の混乱など、このようなテキストの誤用の可能性への懸念を引き起こしている。
本研究の目的は,既存のLLM生成テキスト検出技術の概要を提供し,言語生成モデルの制御と制御を強化することである。
論文 参考訳(メタデータ) (2023-02-04T04:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。