End-to-end Deformable Attention Graph Neural Network for Single-view
Liver Mesh Reconstruction
- URL: http://arxiv.org/abs/2303.07432v1
- Date: Mon, 13 Mar 2023 19:15:49 GMT
- Title: End-to-end Deformable Attention Graph Neural Network for Single-view
Liver Mesh Reconstruction
- Authors: Matej Gazda, Peter Drotar, Liset Vazquez Romaguera and Samuel Kadoury
- Abstract summary: We propose a novel end-to-end attention graph neural network model that generates in real-time a triangular shape of the liver.
The proposed method achieves results with an average error of 3.06 +- 0.7 mm and Chamfer distance with L2 norm of 63.14 +- 27.28.
- Score: 2.285821277711784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intensity modulated radiotherapy (IMRT) is one of the most common modalities
for treating cancer patients. One of the biggest challenges is precise
treatment delivery that accounts for varying motion patterns originating from
free-breathing. Currently, image-guided solutions for IMRT is limited to 2D
guidance due to the complexity of 3D tracking solutions. We propose a novel
end-to-end attention graph neural network model that generates in real-time a
triangular shape of the liver based on a reference segmentation obtained at the
preoperative phase and a 2D MRI coronal slice taken during the treatment. Graph
neural networks work directly with graph data and can capture hidden patterns
in non-Euclidean domains. Furthermore, contrary to existing methods, it
produces the shape entirely in a mesh structure and correctly infers mesh shape
and position based on a surrogate image. We define two on-the-fly approaches to
make the correspondence of liver mesh vertices with 2D images obtained during
treatment. Furthermore, we introduce a novel task-specific identity loss to
constrain the deformation of the liver in the graph neural network to limit
phenomenons such as flying vertices or mesh holes. The proposed method achieves
results with an average error of 3.06 +- 0.7 mm and Chamfer distance with L2
norm of 63.14 +- 27.28.
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
Mesh reconstruction of the cardiac anatomy from medical images is useful for shape and motion measurements and biophysics simulations.
Traditional voxel-based approaches rely on pre- and post-processing that compromises image fidelity.
We propose a novel explicit differentiable voxelization and slicing (DVS) algorithm that allows gradient backpropagation to a mesh from its slices.
arXiv Detail & Related papers (2024-09-03T17:19:31Z) - Deep-Motion-Net: GNN-based volumetric organ shape reconstruction from single-view 2D projections [1.8189671456038365]
We propose an end-to-end graph neural network architecture that enables 3D organ shape reconstruction during radiotherapy.
The proposed model learns the mesh regression from a patient-specific template and deep features extracted from kV images at arbitrary projection angles.
Overall framework was tested quantitatively on synthetic respiratory motion scenarios and qualitatively on in-treatment images acquired over full scan series for liver cancer patients.
arXiv Detail & Related papers (2024-07-09T09:07:18Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Landmark Tracking in Liver US images Using Cascade Convolutional Neural
Networks with Long Short-Term Memory [9.49563286905127]
This study proposed a deep learning-based tracking method for ultrasound (US) image-guided radiation therapy.
The proposed model was tested on the liver US tracking datasets used in the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015 challenges.
arXiv Detail & Related papers (2022-09-14T22:01:20Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - IGCN: Image-to-graph Convolutional Network for 2D/3D Deformable
Registration [1.2246649738388387]
We propose an image-to-graph convolutional network that achieves deformable registration of a 3D organ mesh for a single-viewpoint 2D projection image.
We show shape prediction considering relationships among multiple organs can be used to predict respiratory motion and deformation from radiographs with clinically acceptable accuracy.
arXiv Detail & Related papers (2021-10-31T12:48:37Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.