Deep-Motion-Net: GNN-based volumetric organ shape reconstruction from single-view 2D projections
- URL: http://arxiv.org/abs/2407.06692v1
- Date: Tue, 9 Jul 2024 09:07:18 GMT
- Title: Deep-Motion-Net: GNN-based volumetric organ shape reconstruction from single-view 2D projections
- Authors: Isuru Wijesinghe, Michael Nix, Arezoo Zakeri, Alireza Hokmabadi, Bashar Al-Qaisieh, Ali Gooya, Zeike A. Taylor,
- Abstract summary: We propose an end-to-end graph neural network architecture that enables 3D organ shape reconstruction during radiotherapy.
The proposed model learns the mesh regression from a patient-specific template and deep features extracted from kV images at arbitrary projection angles.
Overall framework was tested quantitatively on synthetic respiratory motion scenarios and qualitatively on in-treatment images acquired over full scan series for liver cancer patients.
- Score: 1.8189671456038365
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose Deep-Motion-Net: an end-to-end graph neural network (GNN) architecture that enables 3D (volumetric) organ shape reconstruction from a single in-treatment kV planar X-ray image acquired at any arbitrary projection angle. Estimating and compensating for true anatomical motion during radiotherapy is essential for improving the delivery of planned radiation dose to target volumes while sparing organs-at-risk, and thereby improving the therapeutic ratio. Achieving this using only limited imaging available during irradiation and without the use of surrogate signals or invasive fiducial markers is attractive. The proposed model learns the mesh regression from a patient-specific template and deep features extracted from kV images at arbitrary projection angles. A 2D-CNN encoder extracts image features, and four feature pooling networks fuse these features to the 3D template organ mesh. A ResNet-based graph attention network then deforms the feature-encoded mesh. The model is trained using synthetically generated organ motion instances and corresponding kV images. The latter is generated by deforming a reference CT volume aligned with the template mesh, creating digitally reconstructed radiographs (DRRs) at required projection angles, and DRR-to-kV style transferring with a conditional CycleGAN model. The overall framework was tested quantitatively on synthetic respiratory motion scenarios and qualitatively on in-treatment images acquired over full scan series for liver cancer patients. Overall mean prediction errors for synthetic motion test datasets were 0.16$\pm$0.13 mm, 0.18$\pm$0.19 mm, 0.22$\pm$0.34 mm, and 0.12$\pm$0.11 mm. Mean peak prediction errors were 1.39 mm, 1.99 mm, 3.29 mm, and 1.16 mm.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - End-to-end Deformable Attention Graph Neural Network for Single-view
Liver Mesh Reconstruction [2.285821277711784]
We propose a novel end-to-end attention graph neural network model that generates in real-time a triangular shape of the liver.
The proposed method achieves results with an average error of 3.06 +- 0.7 mm and Chamfer distance with L2 norm of 63.14 +- 27.28.
arXiv Detail & Related papers (2023-03-13T19:15:49Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - IGCN: Image-to-graph Convolutional Network for 2D/3D Deformable
Registration [1.2246649738388387]
We propose an image-to-graph convolutional network that achieves deformable registration of a 3D organ mesh for a single-viewpoint 2D projection image.
We show shape prediction considering relationships among multiple organs can be used to predict respiratory motion and deformation from radiographs with clinically acceptable accuracy.
arXiv Detail & Related papers (2021-10-31T12:48:37Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs.
We mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.
arXiv Detail & Related papers (2021-10-14T23:05:47Z) - A Point Cloud Generative Model via Tree-Structured Graph Convolutions
for 3D Brain Shape Reconstruction [31.436531681473753]
It is almost impossible to obtain the intraoperative 3D shape information by using physical methods such as sensor scanning.
In this paper, a general generative adversarial network (GAN) architecture is proposed to reconstruct the 3D point clouds (PCs) of brains by using one single 2D image.
arXiv Detail & Related papers (2021-07-21T07:57:37Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Robust Self-Supervised Learning of Deterministic Errors in Single-Plane
(Monoplanar) and Dual-Plane (Biplanar) X-ray Fluoroscopy [2.7528170226206443]
Fluoroscopic imaging that captures X-ray images at video framerates is advantageous for guiding catheter insertions by vascular surgeons and interventional radiologists.
Visualizing the dynamical movements non-invasively allows complex surgical procedures to be performed with less trauma to the patient.
This paper presents a robust self-calibration algorithm suitable for single-plane and dual-plane fluoroscopy.
arXiv Detail & Related papers (2020-01-03T01:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.