Randomness Certification from Multipartite Quantum Steering for
Arbitrary Dimensional Systems
- URL: http://arxiv.org/abs/2307.02061v1
- Date: Wed, 5 Jul 2023 06:58:41 GMT
- Title: Randomness Certification from Multipartite Quantum Steering for
Arbitrary Dimensional Systems
- Authors: Yi Li, Yu Xiang, Xiao-Dong Yu, H. Chau Nguyen, Otfried G\"uhne,
Qiongyi He
- Abstract summary: We show that the distributed structure of several parties leads to additional protection against possible attacks by an eavesdropper.
We prove that the necessary and sufficient resource for quantum randomness in this scenario is multipartite quantum steering.
- Score: 18.328936600754016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement in bipartite systems has been applied for the generation of
secure random numbers, which are playing an important role in cryptography or
scientific numerical simulations. Here, we propose to use multipartite
entanglement distributed between trusted and untrusted parties for generating
randomness of arbitrary dimensional systems. We show that the distributed
structure of several parties leads to additional protection against possible
attacks by an eavesdropper, resulting in more secure randomness generated than
in the corresponding bipartite scenario. Especially, randomness can be
certified in the group of untrusted parties, even there is no randomness exists
in either of them individually. We prove that the necessary and sufficient
resource for quantum randomness in this scenario is multipartite quantum
steering when two measurement settings are performed on the untrusted parties.
However, the sufficiency no longer holds with more measurement settings.
Finally, we apply our analysis to some experimentally realized states and show
that more randomness can be extracted in comparison to the existing analysis.
Related papers
- Certification of randomness without seed randomness [0.0]
Device-independently certified random number generators provide maximum security.
We propose a one-sided device-independent scheme to certify two bits of randomness without the initial seed randomness.
arXiv Detail & Related papers (2023-07-21T10:52:44Z) - Certification of unbounded randomness without nonlocality [0.0]
We provide a scheme to certify unbounded randomness in a semi-device-independent way based on the maximal violation of Leggett-Garg inequalities.
The scheme is independent of the choice of the quantum state, and consequently even "quantum" noise could be utilized to self-test quantum measurements.
arXiv Detail & Related papers (2023-07-03T20:11:08Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Experimental certification of more than one bit of quantum randomness in
the two inputs and two outputs scenario [0.0]
We present an experimental realization of recent Bell-type operators designed to provide private random numbers that are secure against adversaries with quantum resources.
We use semi-definite programming to provide lower bounds on the generated randomness in terms of both min-entropy and von Neumann entropy.
Our results demonstrate the first experiment that certifies close to two bits of randomness from binary measurements of two parties.
arXiv Detail & Related papers (2023-03-13T20:42:53Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Algorithms for Adaptive Experiments that Trade-off Statistical Analysis
with Reward: Combining Uniform Random Assignment and Reward Maximization [50.725191156128645]
Multi-armed bandit algorithms like Thompson Sampling can be used to conduct adaptive experiments.
We present simulations for 2-arm experiments that explore two algorithms that combine the benefits of uniform randomization for statistical analysis.
arXiv Detail & Related papers (2021-12-15T22:11:58Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z) - Certified Randomness From Steering Using Sequential Measurements [0.0]
A single entangled two-qubit pure state can be used to produce arbitrary amounts of certified randomness.
Motivated by these difficulties in the device-independent setting, we consider the scenario of one-sided device independence.
We show how certain aspects of previous work can be adapted to this scenario and provide theoretical bounds on the amount of randomness which can be certified.
arXiv Detail & Related papers (2020-08-03T08:18:29Z) - Semi-Device-Independent Random Number Generation with Flexible
Assumptions [0.0]
We propose a new framework for semi-device-independent randomness certification using a source of trusted vacuum in the form of a signal shutter.
We experimentally demonstrate our protocol with a photonic setup and generate secure random bits under three different assumptions with varying degrees of security and resulting data rates.
arXiv Detail & Related papers (2020-02-27T18:05:17Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.