Deep Metric Learning for the Hemodynamics Inference with
Electrocardiogram Signals
- URL: http://arxiv.org/abs/2308.04650v2
- Date: Sun, 10 Sep 2023 20:28:21 GMT
- Title: Deep Metric Learning for the Hemodynamics Inference with
Electrocardiogram Signals
- Authors: Hyewon Jeong, Collin M. Stultz, Marzyeh Ghassemi
- Abstract summary: We use a dataset that contains over 5.4 million ECGs without concomitant central pressure labels to pre-train a self-supervised DML model.
A supervised DML model that uses ECGs with access to 8,172 mPCWP labels demonstrated significantly better performance on the mPCWP regression task.
- Score: 14.972877620537686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heart failure is a debilitating condition that affects millions of people
worldwide and has a significant impact on their quality of life and mortality
rates. An objective assessment of cardiac pressures remains an important method
for the diagnosis and treatment prognostication for patients with heart
failure. Although cardiac catheterization is the gold standard for estimating
central hemodynamic pressures, it is an invasive procedure that carries
inherent risks, making it a potentially dangerous procedure for some patients.
Approaches that leverage non-invasive signals - such as electrocardiogram (ECG)
- have the promise to make the routine estimation of cardiac pressures feasible
in both inpatient and outpatient settings. Prior models trained to estimate
intracardiac pressures (e.g., mean pulmonary capillary wedge pressure (mPCWP))
in a supervised fashion have shown good discriminatory ability but have been
limited to the labeled dataset from the heart failure cohort. To address this
issue and build a robust representation, we apply deep metric learning (DML)
and propose a novel self-supervised DML with distance-based mining that
improves the performance of a model with limited labels. We use a dataset that
contains over 5.4 million ECGs without concomitant central pressure labels to
pre-train a self-supervised DML model which showed improved classification of
elevated mPCWP compared to self-supervised contrastive baselines. Additionally,
the supervised DML model that uses ECGs with access to 8,172 mPCWP labels
demonstrated significantly better performance on the mPCWP regression task
compared to the supervised baseline. Moreover, our data suggest that DML yields
models that are performant across patient subgroups, even when some patient
subgroups are under-represented in the dataset. Our code is available at
https://github.com/mandiehyewon/ssldml
Related papers
- Continuous max-flow augmentation of self-supervised few-shot learning on SPECT left ventricles [0.0]
This paper aims to give a recipe for diagnostic centers as well as for clinics to automatically segment the myocardium based on small and low-quality labels on reconstructed SPECT.
A combination of Continuous Max-Flow (CMF) with prior shape information is developed to augment the 3D U-Net self-supervised learning (SSL) approach on various geometries of SPECT apparatus.
arXiv Detail & Related papers (2024-05-09T03:19:19Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - TransfoRhythm: A Transformer Architecture Conductive to Blood Pressure Estimation via Solo PPG Signal Capturing [5.255373360156652]
Blood pressure (BP) serves as a critical health indicator for accurate and timely diagnosis and/or treatment of hypertension.
Recent advancements in Artificial Intelligence (AI) and Deep Neural Networks (DNNs) have led to a surge of interest in developing data-driven solutions.
This paper represents the first study to apply the MIMIC IV dataset for cuff-less BP estimation.
arXiv Detail & Related papers (2024-04-15T00:36:33Z) - Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
We propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data.
We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry.
Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances.
arXiv Detail & Related papers (2024-03-28T15:41:43Z) - Development of Automated Neural Network Prediction for Echocardiographic Left ventricular Ejection Fraction [36.58987036154144]
This paper proposes a new pipeline method based on deep neural networks and ensemble learning to quantify left ventricular ejection fraction (LVEF)
The method was developed and validated in an open-source dataset containing 10,030 echocardiograms.
This study demonstrates that an automated neural network-based calculation of LVEF is comparable to expert clinicians performing frame-by-frame manual evaluation of cardiac systolic function.
arXiv Detail & Related papers (2024-03-18T18:09:22Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - A Compact LSTM-SVM Fusion Model for Long-Duration Cardiovascular
Diseases Detection [0.0]
Globally, cardiovascular diseases (CVDs) are the leading cause of mortality, accounting for an estimated 17.9 million deaths annually.
One critical clinical objective is the early detection of CVDs using electrocardiogram (ECG) data.
Recent advancements based on machine learning and deep learning have achieved great progress in this domain.
arXiv Detail & Related papers (2023-11-20T10:57:11Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Tensor-based Multimodal Learning for Prediction of Pulmonary Arterial Wedge Pressure from Cardiac MRI [6.21112347271845]
Heart failure is a serious and life-threatening condition that can lead to elevated pressure in the left ventricle.
PAWP is an important surrogate marker indicating high pressure in the left ventricle.
A non-invasive method is useful in quickly identifying high-risk patients from a large population.
arXiv Detail & Related papers (2023-03-14T00:05:08Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Successive Subspace Learning for Cardiac Disease Classification with
Two-phase Deformation Fields from Cine MRI [36.044984400761535]
This work proposes a lightweight successive subspace learning framework for CVD classification.
It is based on an interpretable feedforward design, in conjunction with a cardiac atlas.
Compared with 3D CNN-based approaches, our framework achieves superior classification performance with 140$times$ fewer parameters.
arXiv Detail & Related papers (2023-01-21T15:00:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.