Interpretability of a Deep Learning Model in the Application of Cardiac
MRI Segmentation with an ACDC Challenge Dataset
- URL: http://arxiv.org/abs/2103.08590v1
- Date: Mon, 15 Mar 2021 17:57:40 GMT
- Title: Interpretability of a Deep Learning Model in the Application of Cardiac
MRI Segmentation with an ACDC Challenge Dataset
- Authors: Adrianna Janik, Jonathan Dodd, Georgiana Ifrim, Kris Sankaran,
Kathleen Curran
- Abstract summary: The project investigates if it is possible to discover concepts representative for different cardiac conditions from the deep network trained to segment crdiac structures.
The contribution of this study is a novel application of the explainability method D-TCAV for cardiac MRI anlysis.
- Score: 8.460936676149101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiac Magnetic Resonance (CMR) is the most effective tool for the
assessment and diagnosis of a heart condition, which malfunction is the world's
leading cause of death. Software tools leveraging Artificial Intelligence
already enhance radiologists and cardiologists in heart condition assessment
but their lack of transparency is a problem. This project investigates if it is
possible to discover concepts representative for different cardiac conditions
from the deep network trained to segment crdiac structures: Left Ventricle
(LV), Right Ventricle (RV) and Myocardium (MYO), using explainability methods
that enhances classification system by providing the score-based values of
qualitative concepts, along with the key performance metrics. With introduction
of a need of explanations in GDPR explainability of AI systems is necessary.
This study applies Discovering and Testing with Concept Activation Vectors
(D-TCAV), an interpretaibilty method to extract underlying features important
for cardiac disease diagnosis from MRI data. The method provides a quantitative
notion of concept importance for disease classified. In previous studies, the
base method is applied to the classification of cardiac disease and provides
clinically meaningful explanations for the predictions of a black-box deep
learning classifier. This study applies a method extending TCAV with a
Discovering phase (D-TCAV) to cardiac MRI analysis. The advantage of the D-TCAV
method over the base method is that it is user-independent. The contribution of
this study is a novel application of the explainability method D-TCAV for
cardiac MRI anlysis. D-TCAV provides a shorter pre-processing time for
clinicians than the base method.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
Arrhythmia, characterized by irregular heart rhythms, presents formidable diagnostic challenges.
This study introduces an innovative approach utilizing deep learning techniques to address the complexities of arrhythmia classification.
arXiv Detail & Related papers (2024-04-13T19:56:15Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
We propose an interpretable instrumental variable (IV) learning framework to eliminate the spurious association and obtain accurate causal representation.
Our approach's performance is demonstrated using the MIMIC-CXR, NIH ChestX-ray 14, and CheXpert datasets.
arXiv Detail & Related papers (2023-05-20T03:12:23Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
In primary diagnosis and analysis of heart defects, an ECG signal plays a significant role.
This paper presents a model for the prediction of ventricular tachycardia arrhythmia using noise filtering, a unique set of ECG features, and a machine learning-based classifier model.
arXiv Detail & Related papers (2021-12-24T05:56:09Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
We propose Attention-Based Convolutional Neural Networks (ABCNN) to work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection.
Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types.
The experimental results show that the proposed ABCNN outperforms the widely used baselines.
arXiv Detail & Related papers (2021-08-18T14:55:46Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Interpreting Deep Neural Networks for Single-Lead ECG Arrhythmia
Classification [0.0]
Cardiac arrhythmia is a prevalent and significant cause of mortality and morbidity among cardiac ailments.
Deep Learning methods have provided solutions to performing arrhythmia diagnosis at scale.
There is a dire need to correlate the obtained model outputs to the corresponding segments of the ECG.
The first method is a novel application of Gradient-weighted Class Activation Map (Grad-CAM) for visualizing the saliency of the CNN model.
In the second approach, saliency is derived by learning the input deletion mask for the LSTM model.
arXiv Detail & Related papers (2020-04-11T13:24:17Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.