論文の概要: Forecasting COVID-19 Infections in Gulf Cooperation Council (GCC)
Countries using Machine Learning
- arxiv url: http://arxiv.org/abs/2303.07600v1
- Date: Tue, 14 Mar 2023 02:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 16:34:44.429770
- Title: Forecasting COVID-19 Infections in Gulf Cooperation Council (GCC)
Countries using Machine Learning
- Title(参考訳): 機械学習を用いた湾岸協力協議会(GCC)諸国におけるCOVID-19感染予測
- Authors: Leila Ismail, Huned Materwala, Alain Hennebelle
- Abstract要約: 我々は、ジョンズ・ホプキンス(英語版)の公開COVID-19データセットを用いて、湾岸協力評議会(GCC)諸国の時系列モデルを開発する。
以上の結果から,新型ウイルスの感染予測を精度良く行うことが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: COVID-19 has infected more than 68 million people worldwide since it was
first detected about a year ago. Machine learning time series models have been
implemented to forecast COVID-19 infections. In this paper, we develop time
series models for the Gulf Cooperation Council (GCC) countries using the public
COVID-19 dataset from Johns Hopkins. The dataset set includes the one-year
cumulative COVID-19 cases between 22/01/2020 to 22/01/2021. We developed
different models for the countries under study based on the spatial
distribution of the infection data. Our experimental results show that the
developed models can forecast COVID-19 infections with high precision.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)は、約1年前に初めて検出されて以来、世界中で6800万人以上が感染している。
新型コロナウイルスの感染予測のために機械学習時系列モデルが実装されている。
本稿では,ジョンズ・ホプキンスによる公衆のCOVID-19データセットを用いて,湾岸協力評議会(GCC)諸国の時系列モデルを開発する。
データセットには、22/01/2020から22/01/2021までの1年間の累積感染者が含まれている。
本研究は,感染データの空間分布に基づいて,各国の異なるモデルを構築した。
実験の結果,新型ウイルスの感染を高精度に予測できることが判明した。
関連論文リスト
- Comparative Analysis of State-of-the-Art Deep Learning Models for
Detecting COVID-19 Lung Infection from Chest X-Ray Images [3.829821362301428]
胸部X線画像を用いた新型コロナウイルス感染を自動的に検出するための最新の最先端のDeep Convolutional Neural Networks(CNN)の適用性について検討した。
トレーニングしたモデルMobileNet,EfficentNet,InceptionV3はそれぞれ95%,95%,94%の分類平均精度を達成した。
論文 参考訳(メタデータ) (2022-07-01T02:23:23Z) - A spatiotemporal machine learning approach to forecasting COVID-19
incidence at the county level in the United States [2.9822184411723645]
本稿では,米国内の郡レベルでの新型コロナウイルスの流行を予測するための,長期記憶アーキテクチャに基づくデータ駆動型モデルであるCOVID-LSTMを提案する。
われわれは、時間的入力として毎週の新規症例数と、Facebookのハンドエンジニアリングによる空間的特徴を用いて、疾患の時間的および空間的拡散を捉えている。
4週間の予測で、私たちのモデルは平均50のケースで、COVIDhubアンサンブルよりも正確です。
論文 参考訳(メタデータ) (2021-09-24T17:40:08Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 Prediction [29.919578191688274]
本稿では,米国各郡における2週間の新型コロナウイルス関連死亡の短期予測を行うCOURAGEという手法を提案する。
本モデルでは, 新型コロナウイルス関連症例, 死亡状況, 地域移動傾向, 人口統計情報の公開情報を完全に活用し, 対応する郡レベルの予測の集約として, 州レベルの予測を作成できる。
論文 参考訳(メタデータ) (2021-05-03T04:00:59Z) - COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data
for AI-driven COVID-19 analytics [116.6248556979572]
COVIDx-USは、新型コロナウイルス関連超音波画像データのオープンアクセスベンチマークデータセットです。
肺超音波93本と,SARS-CoV-2肺炎,非SARS-CoV-2肺炎,健康管理症例10,774本からなる。
論文 参考訳(メタデータ) (2021-03-18T03:31:33Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - COVID-19 Pandemic Outbreak in the Subcontinent: A data-driven analysis [0.8057708414390126]
2019年12月下旬、中国湖北省武漢市で新型コロナウイルス(COVID-19)が流行した。
多くの研究が、この亜大陸は新型コロナウイルスの影響で最悪の地域にとどまる可能性があると主張している。
本稿ではバングラデシュ、インド、パキスタンの公開疫学データを用いて再生数を推定する。
論文 参考訳(メタデータ) (2020-08-22T10:40:17Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
胸部CT(Central Computed Tomography)において,地域肺炎(CAP)からCOVID-19を自動診断するデュアルサンプリングアテンションネットワークを開発した。
特に,3D畳み込みネットワーク(CNN)を用いた新しいオンラインアテンションモジュールを提案する。
我々のアルゴリズムは、受信機動作特性曲線(AUC)値0.944、精度87.5%、感度86.9%、特異度90.1%、F1スコア82.0%の領域で、COVID-19画像を識別することができる。
論文 参考訳(メタデータ) (2020-05-06T09:56:51Z) - CoroNet: A deep neural network for detection and diagnosis of COVID-19
from chest x-ray images [0.0]
CoroNetは、胸部X線画像からCOVID-19感染を自動的に検出するDeep Conceptional Neural Networkモデルである。
提案したモデルは全体の89.6%の精度を達成し、新型コロナウイルス患者の精度とリコール率は93%と98.2%である。
論文 参考訳(メタデータ) (2020-04-10T07:46:07Z) - A machine learning methodology for real-time forecasting of the
2019-2020 COVID-19 outbreak using Internet searches, news alerts, and
estimates from mechanistic models [53.900779250589814]
提案手法は,2日前の安定かつ正確な予測を行うことができる。
我々のモデルでは,中国32州中27州において,ベースラインモデルよりも予測力が優れています。
論文 参考訳(メタデータ) (2020-04-08T14:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。