論文の概要: The Life Cycle of Knowledge in Big Language Models: A Survey
- arxiv url: http://arxiv.org/abs/2303.07616v1
- Date: Tue, 14 Mar 2023 03:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 16:24:40.415850
- Title: The Life Cycle of Knowledge in Big Language Models: A Survey
- Title(参考訳): 大規模言語モデルにおける知識のライフサイクル:調査
- Authors: Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun
- Abstract要約: 事前訓練された言語モデル(PLM)は、言語モデルによって知識を取得、維持、更新、利用する方法に大きな注目を集めている。
膨大な量の関連する研究にもかかわらず、学習、チューニング、アプリケーションプロセスを通して、言語モデル内で知識がどのように循環するかについての統一された見解はいまだに存在しない。
我々は, PLMにおける知識のライフサイクルを5つの臨界期間に分割し, 構築, 維持, 使用の際の知識の循環について検討することによって, PLMを知識ベースシステムとして再考する。
- 参考スコア(独自算出の注目度): 39.955688635216056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge plays a critical role in artificial intelligence. Recently, the
extensive success of pre-trained language models (PLMs) has raised significant
attention about how knowledge can be acquired, maintained, updated and used by
language models. Despite the enormous amount of related studies, there still
lacks a unified view of how knowledge circulates within language models
throughout the learning, tuning, and application processes, which may prevent
us from further understanding the connections between current progress or
realizing existing limitations. In this survey, we revisit PLMs as
knowledge-based systems by dividing the life circle of knowledge in PLMs into
five critical periods, and investigating how knowledge circulates when it is
built, maintained and used. To this end, we systematically review existing
studies of each period of the knowledge life cycle, summarize the main
challenges and current limitations, and discuss future directions.
- Abstract(参考訳): 知識は人工知能において重要な役割を果たす。
近年,事前学習型言語モデル (PLM) の成功により,言語モデルによる知識の獲得,維持,更新,利用について大きな注目を集めている。
膨大な量の関連する研究にもかかわらず、学習、チューニング、アプリケーションプロセスを通して、知識がどのように言語モデル内で循環するかという統一された見解はいまだに欠けている。
本研究では, PLMにおける知識のライフサイクルを5つの臨界期間に分割し, 構築, 維持, 使用時の知識の循環について検討することによって, PLMを知識ベースシステムとして再考する。
そこで我々は,知識ライフサイクルの各期間の既存研究を体系的にレビューし,主な課題と現状の限界を整理し,今後の方向性について議論する。
関連論文リスト
- Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
本稿では,知識利用と進化を含む新しい分類法から知識メカニズムの解析をレビューする。
LLMが学んだ知識、パラメトリック知識の脆弱性の理由、そして解決が難しい潜在的な暗黒知識(仮説)について論じる。
論文 参考訳(メタデータ) (2024-07-22T06:15:59Z) - Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK)は知識推論のための包括的なフレームワークである。
CoKにはデータセット構築とモデル学習の両方のための方法論が含まれている。
KnowReasonで広範な実験を行う。
論文 参考訳(メタデータ) (2024-06-30T10:49:32Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
大規模言語モデル (LLMs) は、文脈内推論の実行において広範な知識と強力な能力を持っている。
本稿では、複数の知識を組み合わせて新しい知識を推論する、文脈外知識推論(OCKR)という、文脈外推論の重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2024-06-11T15:58:59Z) - GrowOVER: How Can LLMs Adapt to Growing Real-World Knowledge? [36.987716816134984]
本稿では,更新の連続サイクルを経たGrowOVER-QAとGrowOVER-Dialogue,動的オープンドメインQA,ダイアログベンチマークを提案する。
本研究は,検索強化言語モデル(RaLM)が,まだトレーニングされていない知識や最近更新されていない知識に悩まされていることを示唆している。
本稿では,新たな検索対話型言語モデルフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-09T01:16:04Z) - Towards Incremental Learning in Large Language Models: A Critical Review [0.0]
このレビューは、大規模言語モデルにおける漸進的学習の包括的分析を提供する。
それは、継続的な学習、メタラーニング、パラメータ効率の学習、およびエキスパートの混合学習を含む、最先端の漸進的な学習パラダイムを合成する。
重要な発見は、これらのアプローチの多くはコアモデルを更新せず、リアルタイムでインクリメンタルに更新するものではないことである。
論文 参考訳(メタデータ) (2024-04-28T20:44:53Z) - Online Continual Knowledge Learning for Language Models [3.654507524092343]
大規模言語モデル(LLM)は、幅広い世界の知識のリポジトリとして機能し、質問応答やファクトチェックなどのタスクを実行できる。
オンライン連続知識学習(OCKL)は,実時間制約下での世界知識の動的性質を管理することを目的としている。
論文 参考訳(メタデータ) (2023-11-16T07:31:03Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
知識強化ディープラーニング(KADL)は、ドメイン知識を特定し、それをデータ効率、一般化可能、解釈可能なディープラーニングのためのディープモデルに統合することを目的としている。
本調査は,既存の研究成果を補足し,知識強化深層学習の一般分野における鳥眼研究の展望を提供する。
論文 参考訳(メタデータ) (2022-11-30T03:44:15Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
モデルパラメータに大量の知識を格納することは、絶え間なく増加する知識とリソースの要求を考えると、準最適である、と我々は主張する。
LM-CORE - これを実現するための一般的なフレームワークで、外部の知識ソースから言語モデルのトレーニングをテキストデカップリングすることができる。
実験結果から, LM-COREは知識探索タスクにおいて, 最先端の知識強化言語モデルよりも大きく, 堅牢な性能を実現していることがわかった。
論文 参考訳(メタデータ) (2022-08-12T18:59:37Z) - Towards Continual Knowledge Learning of Language Models [11.000501711652829]
大規模言語モデル(LM)は、膨大な量のWebコーパスで事前訓練を行う際に、そのパラメータで世界の知識を符号化することが知られている。
実世界のシナリオでは、LMに格納されている世界知識は、世界が変化するにつれて急速に時代遅れになる。
継続知識学習(CKL)と呼ばれる新しい継続学習(CL)問題を定式化する。
論文 参考訳(メタデータ) (2021-10-07T07:00:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。