論文の概要: Adaptive Policy Learning for Offline-to-Online Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2303.07693v1
- Date: Tue, 14 Mar 2023 08:13:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:58:25.255728
- Title: Adaptive Policy Learning for Offline-to-Online Reinforcement Learning
- Title(参考訳): オフライン・オンライン強化学習のための適応的政策学習
- Authors: Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, Jing
Jiang
- Abstract要約: 我々は、エージェントがオフラインデータセットから最初に学習され、オンラインにトレーニングされたオフライン-オンライン設定について検討する。
オフラインおよびオンラインデータを効果的に活用するためのAdaptive Policy Learningというフレームワークを提案する。
- 参考スコア(独自算出の注目度): 27.80266207283246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional reinforcement learning (RL) needs an environment to collect
fresh data, which is impractical when online interactions are costly. Offline
RL provides an alternative solution by directly learning from the previously
collected dataset. However, it will yield unsatisfactory performance if the
quality of the offline datasets is poor. In this paper, we consider an
offline-to-online setting where the agent is first learned from the offline
dataset and then trained online, and propose a framework called Adaptive Policy
Learning for effectively taking advantage of offline and online data.
Specifically, we explicitly consider the difference between the online and
offline data and apply an adaptive update scheme accordingly, that is, a
pessimistic update strategy for the offline dataset and an optimistic/greedy
update scheme for the online dataset. Such a simple and effective method
provides a way to mix the offline and online RL and achieve the best of both
worlds. We further provide two detailed algorithms for implementing the
framework through embedding value or policy-based RL algorithms into it.
Finally, we conduct extensive experiments on popular continuous control tasks,
and results show that our algorithm can learn the expert policy with high
sample efficiency even when the quality of offline dataset is poor, e.g.,
random dataset.
- Abstract(参考訳): 従来の強化学習(RL)では、オンラインインタラクションがコストがかかる場合には、新しいデータを集める環境が必要である。
オフラインRLは、以前に収集したデータセットから直接学習することで、代替ソリューションを提供する。
しかし、オフラインデータセットの品質が低ければ、不満足なパフォーマンスが得られるだろう。
本稿では,エージェントがまずオフラインデータセットから学び,次にオンライントレーニングを行うオフライン-オンライン設定を検討し,オフライン/オンラインデータを有効に活用するための適応ポリシー学習というフレームワークを提案する。
具体的には、オンラインデータとオフラインデータの違いを明示的に考慮し、オフラインデータセットの悲観的更新戦略とオンラインデータセットの楽観的/欲望的な更新スキームに対応する適応更新スキームを適用する。
このようなシンプルで効果的な方法は、オフラインとオンラインのRLを混合し、両方の世界のベストを達成する方法を提供する。
さらに、価値やポリシーに基づくRLアルゴリズムを組み込むことで、フレームワークを実装するための2つの詳細なアルゴリズムを提供する。
最後に,一般的な連続制御タスクを広範囲に実験した結果,オフラインデータセットの品質が貧弱な場合,例えばランダムデータセットなどであっても,アルゴリズムは高いサンプル効率でエキスパートポリシーを学習できることを示した。
関連論文リスト
- Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline
Pre-Training with Model Based Augmentation [59.899714450049494]
オフラインの事前トレーニングは、準最適ポリシーを生成し、オンライン強化学習のパフォーマンスを低下させる可能性がある。
本稿では,オフライン強化学習による事前学習のメリットを最大化し,有効となるために必要なデータの規模を削減するためのモデルベースデータ拡張戦略を提案する。
論文 参考訳(メタデータ) (2023-12-15T14:49:41Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
オフラインポリシー学習は、既存のトラジェクトリのデータセットを使用して、追加データを収集せずに意思決定ポリシーを学ぶことを目的としている。
我々は、データセットが最適下軌道に支配されている場合、最先端のオフラインRLアルゴリズムはデータセットにおけるトラジェクトリの戻り平均よりも大幅に改善されないことを論じる。
本稿では,標準オフラインRLアルゴリズムにおいて,サンプリング戦略の実現と,プラグイン・アンド・プレイモジュールとして使用できるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-06T17:58:14Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
我々はENsemble-based Offline-To-Online (ENOTO) RLという新しいフレームワークを提案する。
Q-networksの数を増やすことで、オフラインの事前トレーニングとオンラインの微調整を、パフォーマンスを低下させることなくシームレスに橋渡しします。
実験により,ENOTOは既存のオフラインRL手法のトレーニング安定性,学習効率,最終性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-06-12T05:10:10Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
オンラインデータ収集を効率的に活用してオフラインデータセットを強化し補完する方法に、中心的な疑問が浮かび上がっている。
我々は、純粋なオフラインRLと純粋なオンラインRLという、両方の世界のベストを打ち負かす3段階のハイブリッドRLアルゴリズムを設計する。
提案アルゴリズムは,データ収集時に報酬情報を必要としない。
論文 参考訳(メタデータ) (2023-05-17T15:17:23Z) - Finetuning from Offline Reinforcement Learning: Challenges, Trade-offs
and Practical Solutions [30.050083797177706]
オフライン強化学習(RL)では、環境とのインタラクションなしに、オフラインデータセットから有能なエージェントをトレーニングすることができる。
このようなオフラインモデルのオンライン微調整により、パフォーマンスがさらに向上する。
より高速な改善のために、標準的なオンラインオフラインアルゴリズムを使用することが可能であることを示す。
論文 参考訳(メタデータ) (2023-03-30T14:08:31Z) - Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale [27.02990488317357]
不完全な専門家によるオフラインのデモンストレーションデータセットを前提として、MDPのオンライン学習パフォーマンスをブートストラップする上で、それを活用するための最善の方法は何か?
Informed Posterior Sampling-based RL (iPSRL)アルゴリズムを最初に提案する。
このアルゴリズムは非現実的であるため、オンラインRLのためのRSVIアルゴリズムと模倣学習を組み合わせたiRLSVIアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-20T18:16:25Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
オンライン学習時にオフラインデータを活用するために、既存のオフライン手法を単純に適用できることを示します。
私たちはこれらの設計選択を広範囲に改善し、パフォーマンスに最も影響を与える重要な要因を示します。
これらのシンプルなレコメンデーションの正しい適用によって、既存のアプローチよりも$mathbf2.5times$の改善が得られます。
論文 参考訳(メタデータ) (2023-02-06T17:30:22Z) - Benchmarks and Algorithms for Offline Preference-Based Reward Learning [41.676208473752425]
本稿では、オフラインデータセットを用いて、プールベースのアクティブラーニングによる嗜好クエリを作成するアプローチを提案する。
提案手法では,報酬学習や政策最適化のステップに対して,実際の物理ロールアウトや正確なシミュレータを必要としない。
論文 参考訳(メタデータ) (2023-01-03T23:52:16Z) - Adaptive Behavior Cloning Regularization for Stable Offline-to-Online
Reinforcement Learning [80.25648265273155]
オフライン強化学習は、固定データセットから学習することで、環境と対話することなくエージェントの動作を学ぶことができる。
オンラインの微調整中、オフラインからオンラインデータへの突然の分散シフトにより、事前訓練されたエージェントのパフォーマンスが急速に低下する可能性がある。
エージェントの性能と訓練安定性に基づいて,オンラインファインチューニングにおける行動クローンの損失を適応的に評価することを提案する。
実験の結果,提案手法はD4RLベンチマークにおいて,最先端のオフライン-オンライン強化学習性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-10-25T09:08:26Z) - MOORe: Model-based Offline-to-Online Reinforcement Learning [26.10368749930102]
モデルに基づくオフライン強化学習(MOORe)アルゴリズムを提案する。
実験結果から,本アルゴリズムはオフラインからオンラインへの移行を円滑に行い,サンプル効率のよいオンライン適応を可能にした。
論文 参考訳(メタデータ) (2022-01-25T03:14:57Z) - Representation Matters: Offline Pretraining for Sequential Decision
Making [27.74988221252854]
本稿では,オフラインデータを逐次意思決定に組み込む手法について考察する。
教師なし学習目標を用いた事前学習は,政策学習アルゴリズムの性能を劇的に向上させることができる。
論文 参考訳(メタデータ) (2021-02-11T02:38:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。