論文の概要: Active Advantage-Aligned Online Reinforcement Learning with Offline Data
- arxiv url: http://arxiv.org/abs/2502.07937v1
- Date: Tue, 11 Feb 2025 20:31:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:50:10.987405
- Title: Active Advantage-Aligned Online Reinforcement Learning with Offline Data
- Title(参考訳): オフラインデータを用いたアクティブアドバンテージ対応オンライン強化学習
- Authors: Xuefeng Liu, Hung T. C. Le, Siyu Chen, Rick Stevens, Zhuoran Yang, Matthew R. Walter, Yuxin Chen,
- Abstract要約: A3 RLは、ポリシー改善を最適化するために、オンラインとオフラインの組み合わせからデータを積極的に選択する新しい方法である。
アクティブサンプリング戦略の有効性を検証する理論的保証を提供する。
- 参考スコア(独自算出の注目度): 56.98480620108727
- License:
- Abstract: Online reinforcement learning (RL) enhances policies through direct interactions with the environment, but faces challenges related to sample efficiency. In contrast, offline RL leverages extensive pre-collected data to learn policies, but often produces suboptimal results due to limited data coverage. Recent efforts have sought to integrate offline and online RL in order to harness the advantages of both approaches. However, effectively combining online and offline RL remains challenging due to issues that include catastrophic forgetting, lack of robustness and sample efficiency. In an effort to address these challenges, we introduce A3 RL , a novel method that actively selects data from combined online and offline sources to optimize policy improvement. We provide theoretical guarantee that validates the effectiveness our active sampling strategy and conduct thorough empirical experiments showing that our method outperforms existing state-of-the-art online RL techniques that utilize offline data. Our code will be publicly available at: https://github.com/xuefeng-cs/A3RL.
- Abstract(参考訳): オンライン強化学習(RL)は環境との直接的な相互作用を通じて政策を強化するが、サンプル効率に関する課題に直面している。
対照的に、オフラインRLはポリシーを学ぶために広範な事前コンパイルデータを活用するが、データカバレッジが制限されているため、しばしば準最適結果を生成する。
最近の取り組みは、両方のアプローチの利点を活用するために、オフラインとオンラインのRLを統合することを目指している。
しかし、破滅的な忘れ物、堅牢性の欠如、サンプル効率の低下といった問題により、オンラインとオフラインのRLを効果的に組み合わせることは依然として困難である。
これらの課題に対処するために,オンラインとオフラインの組み合わせからデータを積極的に選択し,政策改善を最適化する新しい手法であるA3 RLを紹介する。
我々は,本手法がオフラインデータを利用した既存のオンラインRL技術よりも優れていることを示す,アクティブサンプリング戦略の有効性を検証し,徹底的な実験実験を行う理論的保証を提供する。
私たちのコードは、https://github.com/xuefeng-cs/A3RLで公開されます。
関連論文リスト
- Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data [64.74333980417235]
オフラインRLを微調整するために適切に設計されたオンラインRLアプローチを使用する限り、オフラインデータの保持は不要であることを示す。
Warm-start RL(WSRL)はオフラインデータを保持することなく微調整が可能であり,既存のアルゴリズムよりも高速に学習でき,高い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-12-10T18:57:12Z) - Offline-Boosted Actor-Critic: Adaptively Blending Optimal Historical Behaviors in Deep Off-Policy RL [42.57662196581823]
オフ・ポリティクス強化学習(RL)は、多くの複雑な現実世界のタスクに取り組むことで顕著な成功を収めた。
既存のRLアルゴリズムの多くは、リプレイバッファ内の情報を最大限活用できない。
OBAC(Offline-Boosted Actor-Critic)は、モデルのないオンラインRLフレームワークで、優れたオフラインポリシーをエレガントに識別する。
論文 参考訳(メタデータ) (2024-05-28T18:38:46Z) - Offline Retraining for Online RL: Decoupled Policy Learning to Mitigate
Exploration Bias [96.14064037614942]
オンライン微調整終了時の方針抽出段階であるオフラインリトレーニングを提案する。
楽観的(探索的)ポリシーは環境と相互作用するために使用され、別の悲観的(探索的)ポリシーは観察されたすべてのデータに基づいて訓練され、評価される。
論文 参考訳(メタデータ) (2023-10-12T17:50:09Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
我々はENsemble-based Offline-To-Online (ENOTO) RLという新しいフレームワークを提案する。
Q-networksの数を増やすことで、オフラインの事前トレーニングとオンラインの微調整を、パフォーマンスを低下させることなくシームレスに橋渡しします。
実験により,ENOTOは既存のオフラインRL手法のトレーニング安定性,学習効率,最終性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-06-12T05:10:10Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
オンラインデータ収集を効率的に活用してオフラインデータセットを強化し補完する方法に、中心的な疑問が浮かび上がっている。
我々は、純粋なオフラインRLと純粋なオンラインRLという、両方の世界のベストを打ち負かす3段階のハイブリッドRLアルゴリズムを設計する。
提案アルゴリズムは,データ収集時に報酬情報を必要としない。
論文 参考訳(メタデータ) (2023-05-17T15:17:23Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
我々は、エージェントがオフラインデータセットから最初に学習され、オンラインにトレーニングされたオフライン-オンライン設定について検討する。
オフラインおよびオンラインデータを効果的に活用するためのAdaptive Policy Learningというフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-14T08:13:21Z) - Launchpad: Learning to Schedule Using Offline and Online RL Methods [9.488752723308954]
既存のRLスケジューラは、過去のデータから学び、カスタムポリシーを改善することの重要性を見落としている。
オフライン強化学習は、オンライン環境の相互作用のない事前記録されたデータセットからポリシー最適化の見通しを示す。
これらの手法は、データ収集と安全性のコスト、特にRLの現実的な応用に関連する問題に対処する。
論文 参考訳(メタデータ) (2022-12-01T16:40:11Z) - MOORe: Model-based Offline-to-Online Reinforcement Learning [26.10368749930102]
モデルに基づくオフライン強化学習(MOORe)アルゴリズムを提案する。
実験結果から,本アルゴリズムはオフラインからオンラインへの移行を円滑に行い,サンプル効率のよいオンライン適応を可能にした。
論文 参考訳(メタデータ) (2022-01-25T03:14:57Z) - OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
Learning [107.6943868812716]
エージェントは大量のオフライン体験データにアクセスでき、オンライン環境へのアクセスは極めて限られている。
我々の主な洞察は、様々な行動からなるオフラインデータを提示すると、このデータを活用する効果的な方法は、反復的かつ時間的に拡張された原始的行動の連続的な空間を抽出することである。
オフラインポリシ最適化のメリットに加えて,このようなオフラインプリミティブ学習の実施も,数発の模倣学習の改善に有効であることを示す。
論文 参考訳(メタデータ) (2020-10-26T14:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。