論文の概要: HALOS: Hallucination-free Organ Segmentation after Organ Resection
Surgery
- arxiv url: http://arxiv.org/abs/2303.07717v1
- Date: Tue, 14 Mar 2023 09:05:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:48:03.449270
- Title: HALOS: Hallucination-free Organ Segmentation after Organ Resection
Surgery
- Title(参考訳): HALOS : 臓器切除後の幻覚を伴わない臓器切除
- Authors: Anne-Marie Rickmann, Murong Xu, Tom Nuno Wolf, Oksana Kovalenko,
Christian Wachinger
- Abstract要約: 最先端のセグメンテーションモデルはしばしば臓器の幻覚、すなわち臓器の偽陽性予測を引き起こす。
臓器切除術後の症例を治療するMR画像における腹部臓器分割のためのHALOSを提案する。
- 参考スコア(独自算出の注目度): 3.079885946230076
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The wide range of research in deep learning-based medical image segmentation
pushed the boundaries in a multitude of applications. A clinically relevant
problem that received less attention is the handling of scans with irregular
anatomy, e.g., after organ resection. State-of-the-art segmentation models
often lead to organ hallucinations, i.e., false-positive predictions of organs,
which cannot be alleviated by oversampling or post-processing. Motivated by the
increasing need to develop robust deep learning models, we propose HALOS for
abdominal organ segmentation in MR images that handles cases after organ
resection surgery. To this end, we combine missing organ classification and
multi-organ segmentation tasks into a multi-task model, yielding a
classification-assisted segmentation pipeline. The segmentation network learns
to incorporate knowledge about organ existence via feature fusion modules.
Extensive experiments on a small labeled test set and large-scale UK Biobank
data demonstrate the effectiveness of our approach in terms of higher
segmentation Dice scores and near-to-zero false positive prediction rate.
- Abstract(参考訳): 深層学習に基づく医用画像のセグメンテーションに関する幅広い研究が、多くの応用において境界線を推し進めた。
臨床的に関連性のある問題として、臓器切除後の不規則解剖によるスキャンの取り扱いがある。
最先端のセグメンテーションモデルは、しばしば臓器の幻覚、すなわち臓器の偽陽性予測を引き起こす。
そこで,本研究では,臓器切除後の症例に対応するmr画像の腹部臓器分割のためのhalosを提案する。
この目的のために,臓器分類の欠如とマルチオーガンセグメンテーションタスクをマルチタスクモデルに結合し,分類支援セグメンテーションパイプラインを生成する。
セグメンテーションネットワークは、機能融合モジュールを介して臓器の存在に関する知識を取り入れることを学ぶ。
小規模のラベル付きテストセットと大規模イギリスのバイオバンクデータに対する広範囲な実験は、より高いセグメンテーションdiceスコアとほぼゼロの偽陽性予測率という観点で、このアプローチの有効性を示している。
関連論文リスト
- AnatoMix: Anatomy-aware Data Augmentation for Multi-organ Segmentation [6.471203541258319]
本稿では,多臓器セグメンテーションデータセットの一般化性を高めるための新しいデータ拡張戦略を提案する。
オブジェクトレベルのマッチングと操作により,本手法は解剖学的に正しい画像を生成することができる。
拡張法は, ベースライン法74.8と比較して76.1ディスとなる。
論文 参考訳(メタデータ) (2024-03-05T21:07:50Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Boundary-Aware Network for Abdominal Multi-Organ Segmentation [21.079667938055668]
腹部臓器をCTとMRIに分割する境界認識ネットワーク(BA-Net)を提案する。
その結果,両セグメンテーションタスクにおいて,BA-NetはnnUNetよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-08-29T02:24:02Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Multi-organ Segmentation via Co-training Weight-averaged Models from
Few-organ Datasets [45.14004510709325]
そこで本研究では,少数のデータセットから統一的なマルチ組織セグメンテーションネットワークを学習するための平均重み付きモデルを提案する。
ネットワーク間のノイズの多い指導を緩和するため、より信頼性の高いソフトラベルを作成するために、平均的な重み付けモデルを採用する。
論文 参考訳(メタデータ) (2020-08-17T08:39:16Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z) - Abdominal multi-organ segmentation with cascaded convolutional and
adversarial deep networks [0.36944296923226316]
深層学習を用いた腹部CTおよびMR画像からの完全自動多臓器分画について検討した。
我々のパイプラインは、最先端のエンコーダデコーダスキームよりも優れた結果をもたらす。
論文 参考訳(メタデータ) (2020-01-26T21:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。