論文の概要: Adaptive Rotated Convolution for Rotated Object Detection
- arxiv url: http://arxiv.org/abs/2303.07820v1
- Date: Tue, 14 Mar 2023 11:53:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:21:33.253528
- Title: Adaptive Rotated Convolution for Rotated Object Detection
- Title(参考訳): 回転物体検出のための適応回転畳み込み
- Authors: Yifan Pu, Yiru Wang, Zhuofan Xia, Yizeng Han, Yulin Wang, Weihao Gan,
Zidong Wang, Shiji Song and Gao Huang
- Abstract要約: 本稿では、回転物体検出問題に対処するために、適応回転変換(ARC)モジュールを提案する。
ARCモジュールでは、コンボリューションカーネルが適応的に回転し、異なる画像に異なる向きのオブジェクト特徴を抽出する。
提案手法は,81.77%mAPのDOTAデータセット上での最先端性能を実現する。
- 参考スコア(独自算出の注目度): 60.457431672273685
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Rotated object detection aims to identify and locate objects in images with
arbitrary orientation. In this scenario, the oriented directions of objects
vary considerably across different images, while multiple orientations of
objects exist within an image. This intrinsic characteristic makes it
challenging for standard backbone networks to extract high-quality features of
these arbitrarily orientated objects. In this paper, we present Adaptive
Rotated Convolution (ARC) module to handle the aforementioned challenges. In
our ARC module, the convolution kernels rotate adaptively to extract object
features with varying orientations in different images, and an efficient
conditional computation mechanism is introduced to accommodate the large
orientation variations of objects within an image. The two designs work
seamlessly in rotated object detection problem. Moreover, ARC can conveniently
serve as a plug-and-play module in various vision backbones to boost their
representation ability to detect oriented objects accurately. Experiments on
commonly used benchmarks (DOTA and HRSC2016) demonstrate that equipped with our
proposed ARC module in the backbone network, the performance of multiple
popular oriented object detectors is significantly improved (e.g. +3.03% mAP on
Rotated RetinaNet and +4.16% on CFA). Combined with the highly competitive
method Oriented R-CNN, the proposed approach achieves state-of-the-art
performance on the DOTA dataset with 81.77% mAP.
- Abstract(参考訳): 回転物体検出は、任意の向きで画像内の物体を識別・発見することを目的としている。
このシナリオでは、オブジェクトの向きの方向は異なる画像間で大きく異なり、オブジェクトの複数の方向は画像内に存在している。
この本質的な特徴は、標準バックボーンネットワークがこれらの任意の向きのオブジェクトの高品質な特徴を抽出することを困難にしている。
本稿では,上述の課題に対処するために,適応回転畳み込み(arc)モジュールを提案する。
ARCモジュールでは、コンボリューションカーネルが適応的に回転して、異なる画像の向きの異なる物体の特徴を抽出し、画像内の物体の大きな向き変化に対応するための効率的な条件計算機構を導入する。
2つの設計は回転物体検出問題においてシームレスに動作する。
さらに、ARCは様々な視覚バックボーンのプラグアンドプレイモジュールとして便利に機能し、オブジェクト指向オブジェクトを正確に検出する表現能力を高めることができる。
一般的なベンチマーク(DOTAとHRSC2016)の実験では、バックボーンネットワークに提案したARCモジュールを組み込むことで、複数の一般的なオブジェクト指向オブジェクト検出器の性能が大幅に向上した(例えば、回転RetinaNetでは+3.03% mAP、CFAでは+4.16%)。
高度に競争力のある方法であるOriented R-CNNと組み合わせて、提案手法は81.77%のmAPでDOTAデータセットの最先端のパフォーマンスを実現する。
関連論文リスト
- GRA: Detecting Oriented Objects through Group-wise Rotating and Attention [64.21917568525764]
GRA(Group-wise Rotating and Attention)モジュールは、オブジェクト指向オブジェクト検出のためのバックボーンネットワークにおける畳み込み操作を置き換えるために提案されている。
GRAは、グループワイド回転(Group-wise Rotating)とグループワイド注意(Group-wise Attention)という2つの重要なコンポーネントを含む、さまざまな向きのオブジェクトのきめ細かい特徴を適応的にキャプチャすることができる。
GRAはDOTA-v2.0ベンチマークで新しい最先端(SOTA)を実現し、以前のSOTA法と比較してパラメータを50%近く削減した。
論文 参考訳(メタデータ) (2024-03-17T07:29:32Z) - DAMSDet: Dynamic Adaptive Multispectral Detection Transformer with
Competitive Query Selection and Adaptive Feature Fusion [82.2425759608975]
赤外可視物体検出は、赤外画像と可視画像の相補的情報を融合することにより、フルデイ物体検出の堅牢化を目指している。
本稿では,この2つの課題に対処する動的適応型マルチスペクトル検出変換器(DAMSDet)を提案する。
4つの公開データセットの実験は、他の最先端の手法と比較して大幅に改善されている。
論文 参考訳(メタデータ) (2024-03-01T07:03:27Z) - ObjFormer: Learning Land-Cover Changes From Paired OSM Data and Optical High-Resolution Imagery via Object-Guided Transformer [31.46969412692045]
本稿では,ペアOSMデータと光学画像を用いた土地被覆変化の直接検出の先駆者となる。
本稿では、オブジェクトベース画像解析(OBIA)技術と高度な視覚変換器アーキテクチャを自然に組み合わせたオブジェクト誘導変換器(Former)を提案する。
OpenMapCDと呼ばれる大規模なベンチマークデータセットは、詳細な実験を行うために構築されている。
論文 参考訳(メタデータ) (2023-10-04T09:26:44Z) - Transformation-Invariant Network for Few-Shot Object Detection in Remote
Sensing Images [15.251042369061024]
FSOD(Few-shot Object Detection)は、トレーニングのために大量のラベル付きデータを頼りにしている。
リモートセンシング画像におけるオブジェクトのスケールと向きのバリエーションは、既存のFSOD法に重大な課題をもたらす。
特徴ピラミッドネットワークの統合と,クエリ機能向上のためのプロトタイプ機能の利用を提案する。
論文 参考訳(メタデータ) (2023-03-13T02:21:38Z) - Multi-Projection Fusion and Refinement Network for Salient Object
Detection in 360{\deg} Omnidirectional Image [141.10227079090419]
我々は,360度全方位画像中の有向物体を検出するために,MPFR-Net(Multi-Projection Fusion and Refinement Network)を提案する。
MPFR-Netは、等角射影像と対応する4つの立方体展開像を入力として使用する。
2つの全方位データセットの実験結果から,提案手法は定性的かつ定量的に,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-12-23T14:50:40Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Rotation Equivariant Feature Image Pyramid Network for Object Detection
in Optical Remote Sensing Imagery [39.25541709228373]
本稿では、回転同値畳み込みに基づく画像ピラミッドネットワークである回転同変特徴像ピラミッドネットワーク(REFIPN)を提案する。
提案するピラミッドネットワークは, 新規な畳み込みフィルタを用いて, 広い範囲で特徴を抽出する。
提案モデルの検出性能は2つの一般的な航空ベンチマークで検証される。
論文 参考訳(メタデータ) (2021-06-02T01:33:49Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
本稿では,物体検出における識別的特徴の役割について論じる。
次に,検出精度を向上させるために,cfc-net (critical feature capture network) を提案する。
本手法は多くの最先端手法と比較して優れた検出性能が得られることを示す。
論文 参考訳(メタデータ) (2021-01-18T02:31:09Z) - A Parallel Down-Up Fusion Network for Salient Object Detection in
Optical Remote Sensing Images [82.87122287748791]
光リモートセンシング画像(RSI)における有意な物体検出のための新しい並列ダウンアップフュージョンネットワーク(PDF-Net)を提案する。
In-pathの低レベル・高レベルな特徴とクロスパスの多解像度な特徴をフル活用して、多様なスケールのサルエントオブジェクトを識別し、散らかった背景を抑える。
ORSSDデータセットの実験により、提案したネットワークは定性的かつ定量的に最先端のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T05:27:57Z) - Align Deep Features for Oriented Object Detection [40.28244152216309]
本稿では、FAM(Feature Alignment Module)とODM(Oriented Detection Module)の2つのモジュールからなる単発アライメントネットワーク(S$2$A-Net)を提案する。
FAMは、アンカー・リファインメント・ネットワークで高品質なアンカーを生成し、アンカーボックスに応じた畳み込み特徴と、新しいアライメント・コンボリューション・コンボリューションとを適応的に調整することができる。
ODMは、まず、向き情報を符号化するためにアクティブな回転フィルタを採用し、次に、分類スコアとローカライゼーション精度の不整合を軽減するために、向きに敏感で方向不変な特徴を生成する。
論文 参考訳(メタデータ) (2020-08-21T09:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。