論文の概要: Transfer Learning for Real-time Deployment of a Screening Tool for
Depression Detection Using Actigraphy
- arxiv url: http://arxiv.org/abs/2303.07847v1
- Date: Tue, 14 Mar 2023 12:37:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:11:37.739539
- Title: Transfer Learning for Real-time Deployment of a Screening Tool for
Depression Detection Using Actigraphy
- Title(参考訳): actigraphyを用いたうつ病検出のためのスクリーニングツールのリアルタイム展開のための転送学習
- Authors: Rajanikant Ghate, Nayan Kalnad, Rahee Walambe, Ketan Kotecha
- Abstract要約: 本稿では,利用者のアクチグラフィーデータに基づいて,うつ病スクリーニングツールをリアルタイムに展開するために,二次データセットに基づいて訓練されたモデルから移行学習に基づくアプローチを提案する。
プライマリセット上で行った1つの横断検証アプローチの修正版では平均精度が0.96となり、各プライマリセットからのデータはテストのために別々に設定された。
- 参考スコア(独自算出の注目度): 8.430502131775722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated depression screening and diagnosis is a highly relevant problem
today. There are a number of limitations of the traditional depression
detection methods, namely, high dependence on clinicians and biased
self-reporting. In recent years, research has suggested strong potential in
machine learning (ML) based methods that make use of the user's passive data
collected via wearable devices. However, ML is data hungry. Especially in the
healthcare domain primary data collection is challenging. In this work, we
present an approach based on transfer learning, from a model trained on a
secondary dataset, for the real time deployment of the depression screening
tool based on the actigraphy data of users. This approach enables machine
learning modelling even with limited primary data samples. A modified version
of leave one out cross validation approach performed on the primary set
resulted in mean accuracy of 0.96, where in each iteration one subject's data
from the primary set was set aside for testing.
- Abstract(参考訳): 自動うつ病スクリーニングと診断は、今日非常に重要な問題である。
従来のうつ病検出法にはいくつかの制限があり、すなわち、臨床医への高い依存度と偏りのある自己報告がある。
近年,ウェアラブルデバイスを介して収集されたユーザの受動的データを利用する機械学習(ML)ベースの手法に強い可能性を示唆している。
しかし、MLはデータ不足です。
特に医療分野におけるプライマリデータ収集は困難である。
本研究では,利用者のアクチグラフィーデータに基づいて,うつ病スクリーニングツールをリアルタイムに展開するために,二次データセットに基づいて訓練されたモデルからトランスファーラーニングに基づくアプローチを提案する。
このアプローチは、限られた一次データサンプルであっても、機械学習のモデリングを可能にする。
プライマリセットで行ったrefing one out cross validationアプローチの修正版では、平均精度が0.96となり、各イテレーションでプライマリセットから1人の被験者のデータをテスト用に設定した。
関連論文リスト
- Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
電気モーターの故障検出と診断は、産業システムの安全かつ信頼性の高い運転を保証する上で最も重要である。
マシン故障診断のための既存のデータ駆動ディープラーニングアプローチは、大量のラベル付きサンプルに大きく依存している。
ラベル付きサンプルを少ない量で活用する基礎モデルに基づくアクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-27T03:25:12Z) - Validity problems in clinical machine learning by indirect data labeling
using consensus definitions [18.18186817228833]
医学における疾患診断の重要領域における機械学習の有効性を実証する。
トレーニングデータのターゲットラベルが間接測定によって決定されたときに発生するものであり、この間接測定を決定するために必要な基本的な測定が入力データ表現に含まれる。
論文 参考訳(メタデータ) (2023-11-06T11:14:48Z) - Leveraging Unlabelled Data in Multiple-Instance Learning Problems for
Improved Detection of Parkinsonian Tremor in Free-Living Conditions [80.88681952022479]
本稿では,半教師付き学習とマルチスタンス学習を組み合わせた新しい手法を提案する。
本研究は,454被験者の非競合データを活用することにより,物体ごとの震動検出において大きな性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2023-04-29T12:25:10Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Time-based Self-supervised Learning for Wireless Capsule Endoscopy [1.3514953384460016]
本研究は,無線内視鏡ビデオにおける自己教師あり学習の活用を提案する。
本研究では,時間軸から抽出した推定固有構造を用いることで,重度の不均衡下であっても,複数の領域固有のアプリケーションにおける検出率を向上させることを証明する。
論文 参考訳(メタデータ) (2022-04-20T20:31:06Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - The unreasonable effectiveness of Batch-Norm statistics in addressing
catastrophic forgetting across medical institutions [8.244654685687054]
モデル改良と事前学習した知識の保持のトレードオフについて検討する。
本稿では,従来のデータセットのグローバルバッチ正規化統計値を用いて,弾性重み付け(EWC)を適応する,単純で効果的な手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T16:57:05Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。