論文の概要: FPUS23: An Ultrasound Fetus Phantom Dataset with Deep Neural Network
Evaluations for Fetus Orientations, Fetal Planes, and Anatomical Features
- arxiv url: http://arxiv.org/abs/2303.07852v1
- Date: Tue, 14 Mar 2023 12:46:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:12:49.615130
- Title: FPUS23: An Ultrasound Fetus Phantom Dataset with Deep Neural Network
Evaluations for Fetus Orientations, Fetal Planes, and Anatomical Features
- Title(参考訳): FPUS23:胎児の向き、胎児の平面、解剖学的特徴をニューラルネットワークで評価した超音波胎児ファントムデータセット
- Authors: Bharath Srinivas Prabakaran and Paul Hamelmann and Erik Ostrowski and
Muhammad Shafique
- Abstract要約: 胎児の生体計測値を推定するための適切な診断平面を同定するために,新しい胎児ファントム超音波データセットFPUS23を提案する。
データセット全体は15,728の画像で構成され、4つの異なるディープニューラルネットワークモデルをトレーニングするために使用される。
また、FPUS23データセットを用いてトレーニングしたモデルを評価し、これらのモデルによって得られた情報を実世界の超音波胎児データセットの精度を大幅に向上させることができることを示した。
- 参考スコア(独自算出の注目度): 10.404128105946583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound imaging is one of the most prominent technologies to evaluate the
growth, progression, and overall health of a fetus during its gestation.
However, the interpretation of the data obtained from such studies is best left
to expert physicians and technicians who are trained and well-versed in
analyzing such images. To improve the clinical workflow and potentially develop
an at-home ultrasound-based fetal monitoring platform, we present a novel fetus
phantom ultrasound dataset, FPUS23, which can be used to identify (1) the
correct diagnostic planes for estimating fetal biometric values, (2) fetus
orientation, (3) their anatomical features, and (4) bounding boxes of the fetus
phantom anatomies at 23 weeks gestation. The entire dataset is composed of
15,728 images, which are used to train four different Deep Neural Network
models, built upon a ResNet34 backbone, for detecting aforementioned fetus
features and use-cases. We have also evaluated the models trained using our
FPUS23 dataset, to show that the information learned by these models can be
used to substantially increase the accuracy on real-world ultrasound fetus
datasets. We make the FPUS23 dataset and the pre-trained models publicly
accessible at https://github.com/bharathprabakaran/FPUS23, which will further
facilitate future research on fetal ultrasound imaging and analysis.
- Abstract(参考訳): 超音波イメージングは、妊娠中の胎児の成長、進行、および全体の健康を評価する最も顕著な技術の1つである。
しかし、これらの研究から得られたデータの解釈は、そのような画像の分析に精通した専門医や技術者に最適である。
そこで本研究では,(1)胎児の生体計測値推定のための正しい診断面,(2)胎児の向き,(3)解剖学的特徴,(4)胎児の胎盤解剖学的境界ボックスを,23週の胎盤で識別できる新しい胎児用ファントム超音波データセット,fpus23を提案する。
データセット全体は15,728イメージで構成されており、前述の胎児の特徴とユースケースを検出するために、ResNet34バックボーン上に構築された4つの異なるディープニューラルネットワークモデルをトレーニングするために使用される。
また、FPUS23データセットを用いてトレーニングしたモデルを評価し、これらのモデルによって得られた情報を実世界の超音波胎児データセットの精度を大幅に向上させることができることを示した。
FPUS23データセットと事前訓練されたモデルをhttps://github.com/bharathprabakaran/FPUS23で公開し、胎児超音波画像と分析のさらなる研究を促進する。
関連論文リスト
- Measuring proximity to standard planes during fetal brain ultrasound scanning [8.328549443700858]
本稿では,超音波(US)平面を臨床利用に近づけるための新しいパイプラインを提案する。
ラベル付きSPとラベルなしUSボリュームスライスの両方を利用した半教師付きセグメンテーションモデルを提案する。
本モデルでは, 胎児の脳画像に対して, 信頼性の高いセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-04-10T16:04:21Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - FetusMapV2: Enhanced Fetal Pose Estimation in 3D Ultrasound [28.408626329596668]
以上の課題を克服するために,新しい3次元ポーズ推定フレームワーク(FetusMapV2)を提案する。
まず,ネットワーク構造に制約がなく,アクティベーションに制約のないGPUメモリ管理手法を提案する。
第2に、対称構造と類似の解剖構造による混乱を軽減するために、新しいペアロスを設計する。
第3に、比較的安定したランドマークを選択して、オンラインのポーズを洗練させることにより、自己指導型形状事前学習を提案する。
論文 参考訳(メタデータ) (2023-10-30T06:18:47Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Towards Realistic Ultrasound Fetal Brain Imaging Synthesis [0.7315240103690552]
臨床データ不足、患者のプライバシ、一般的には異常の稀な発生、データ収集と検証の専門家の限られたため、一般の超音波胎児画像データセットはほとんどない。
このようなデータ不足に対処するため、私たちは1つのパブリックデータセットから胎児の超音波脳面の画像を生成するために、GAN(Generative Adversarial Network)ベースのモデル、拡散超解像-GANとトランスフォーマーベース-GANを提案した。
論文 参考訳(メタデータ) (2023-04-08T07:07:20Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
新型コロナウイルス(COVID-19)の世界的なパンデミックの出現に伴い、超音波画像を完全に自動化する必要がある。
本稿では,学習型コンピュータビジョン技術を取り入れた,視覚に基づくデータ駆動方式を提案する。
本手法は、プローブ位置決めのための15.52mm(9.47mm)、プローブ方位のための4.32(3.69deg)の精度を達成し、全走査目標に対する誤差閾値25mm以下で成功率を80%以上とした。
論文 参考訳(メタデータ) (2022-12-15T14:34:12Z) - COVID-Net US-X: Enhanced Deep Neural Network for Detection of COVID-19
Patient Cases from Convex Ultrasound Imaging Through Extended Linear-Convex
Ultrasound Augmentation Learning [75.74756992992147]
世界人口は新型コロナウイルス(COVID-19)のパンデミックの影響で大きな影響を受け続けている。
医療用ポイント・オブ・ケア・超音波(POCUS)画像は、低コストで有効な画像モダリティとして利用されてきている。
POCUSを使用した新型コロナウイルススクリーニングのためのディープニューラルネットワークを構築する上での大きな課題は、使用するプローブの種類だ。
論文 参考訳(メタデータ) (2022-04-29T02:13:39Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - AutoFB: Automating Fetal Biometry Estimation from Standard Ultrasound
Planes [10.745788530692305]
提案したフレームワークは、最先端のセグメンテーションモデルを用いて、重要な胎児解剖を意味的にセグメンテーションする。
その結果, セグメンテーション性能のよいネットワークは, バイオメトリ推定においてより正確であることが示唆された。
論文 参考訳(メタデータ) (2021-07-12T08:42:31Z) - FetusMap: Fetal Pose Estimation in 3D Ultrasound [42.59502360552173]
そこで本研究では, 胎児の3次元姿勢を推定し, その定量的解析を容易にすることを提案する。
これは文学における胎児の3次元ポーズ推定に関する最初の研究である。
本稿では、深層ネットワークを微調整し、視覚的に妥当なポーズ予測を形成するための自己教師付き学習(SSL)フレームワークを提案する。
論文 参考訳(メタデータ) (2019-10-11T01:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。