論文の概要: Towards Realistic Ultrasound Fetal Brain Imaging Synthesis
- arxiv url: http://arxiv.org/abs/2304.03941v1
- Date: Sat, 8 Apr 2023 07:07:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 18:54:28.980947
- Title: Towards Realistic Ultrasound Fetal Brain Imaging Synthesis
- Title(参考訳): リアル超音波胎児脳画像合成に向けて
- Authors: Michelle Iskandar, Harvey Mannering, Zhanxiang Sun, Jacqueline
Matthew, Hamideh Kerdegari, Laura Peralta, Miguel Xochicale
- Abstract要約: 臨床データ不足、患者のプライバシ、一般的には異常の稀な発生、データ収集と検証の専門家の限られたため、一般の超音波胎児画像データセットはほとんどない。
このようなデータ不足に対処するため、私たちは1つのパブリックデータセットから胎児の超音波脳面の画像を生成するために、GAN(Generative Adversarial Network)ベースのモデル、拡散超解像-GANとトランスフォーマーベース-GANを提案した。
- 参考スコア(独自算出の注目度): 0.7315240103690552
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Prenatal ultrasound imaging is the first-choice modality to assess fetal
health. Medical image datasets for AI and ML methods must be diverse (i.e.
diagnoses, diseases, pathologies, scanners, demographics, etc), however there
are few public ultrasound fetal imaging datasets due to insufficient amounts of
clinical data, patient privacy, rare occurrence of abnormalities in general
practice, and limited experts for data collection and validation. To address
such data scarcity, we proposed generative adversarial networks (GAN)-based
models, diffusion-super-resolution-GAN and transformer-based-GAN, to synthesise
images of fetal ultrasound brain planes from one public dataset. We reported
that GAN-based methods can generate 256x256 pixel size of fetal ultrasound
trans-cerebellum brain image plane with stable training losses, resulting in
lower FID values for diffusion-super-resolution-GAN (average 7.04 and lower FID
5.09 at epoch 10) than the FID values of transformer-based-GAN (average 36.02
and lower 28.93 at epoch 60). The results of this work illustrate the potential
of GAN-based methods to synthesise realistic high-resolution ultrasound images,
leading to future work with other fetal brain planes, anatomies, devices and
the need of a pool of experts to evaluate synthesised images. Code, data and
other resources to reproduce this work are available at
\url{https://github.com/budai4medtech/midl2023}.
- Abstract(参考訳): 出生前超音波検査は胎児の健康を評価する最初の方法である。
AIとMLの手法の医療画像データセットは多種多様なもの(診断、疾患、病理、スキャナー、人口統計学など)でなければならないが、臨床データ不足、患者のプライバシ、一般的には稀な異常発生、データ収集と検証の専門家に限られている。
このようなデータ不足に対処するため,我々は1つの公開データセットから胎児超音波脳プレーンの画像を合成するために,生成型逆ネットワーク(gan)ベースのモデルである拡散超解像ganおよびトランスフォーマベースganを提案した。
我々は,gan法を用いて胎児超音波経小脳画像平面の256x256ピクセルサイズを安定なトレーニング損失で生成でき,その結果,拡散超解像ganのfid値がトランスフォーマベースganのfid値(平均36.02,エポック60では28.93)よりも低い値(平均7.04,低fid 5.09)となることを報告した。
本研究の成果は,ganを用いた高分解能超音波画像合成の可能性を示し,他の胎児脳平面,解剖学,装置,合成画像評価のための専門家プールの必要性を示唆する。
この作業を再現するコード、データ、その他のリソースは \url{https://github.com/budai4medtech/midl2023} で入手できる。
関連論文リスト
- S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography [2.07180164747172]
我々はS-CycleGANと呼ばれる高度なディープラーニングモデルを導入し,CTデータから高品質な合成超音波画像を生成する。
合成画像を用いて,ロボット支援超音波スキャンシステムの開発の諸側面を解明する。
論文 参考訳(メタデータ) (2024-06-03T10:53:45Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - GAN-GA: A Generative Model based on Genetic Algorithm for Medical Image
Generation [0.0]
生成モデルは、医療画像不足問題に対処するための有望な解決策を提供する。
本稿では遺伝的アルゴリズムを組み込んだ生成モデルであるGAN-GAを提案する。
提案モデルは特徴を保ちながら画像の忠実度と多様性を向上させる。
論文 参考訳(メタデータ) (2023-12-30T20:16:45Z) - FUSC: Fetal Ultrasound Semantic Clustering of Second Trimester Scans
Using Deep Self-supervised Learning [1.0819408603463427]
毎年1億4000万人以上の胎児が生まれ、多くのスキャンが行われる。
大量の胎児超音波スキャンが利用可能であることは、堅牢な機械学習モデルをトレーニングする機会を提供する。
本研究では,超音波画像の自動クラスタリングのための教師なしアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T09:11:23Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Reslicing Ultrasound Images for Data Augmentation and Vessel
Reconstruction [22.336362581634706]
本稿では,追跡された2次元画像から再構成された3次元ボリュームをスライスした超音波画像に対する弱い監視データ拡張手法であるRESUSを紹介する。
超音波画像の物理的制約により生体内で容易に得られないビューを生成し,これらの拡張超音波画像を用いてセマンティックセグメンテーションモデルを訓練する。
我々は, RESUSが非拡張画像を用いた訓練よりも統計的に有意な改善を達成し, 血管再建による質的改善を強調できることを実証した。
論文 参考訳(メタデータ) (2023-01-18T03:22:47Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
新型コロナウイルス(COVID-19)の世界的なパンデミックの出現に伴い、超音波画像を完全に自動化する必要がある。
本稿では,学習型コンピュータビジョン技術を取り入れた,視覚に基づくデータ駆動方式を提案する。
本手法は、プローブ位置決めのための15.52mm(9.47mm)、プローブ方位のための4.32(3.69deg)の精度を達成し、全走査目標に対する誤差閾値25mm以下で成功率を80%以上とした。
論文 参考訳(メタデータ) (2022-12-15T14:34:12Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - Ultrasound Image Classification using ACGAN with Small Training Dataset [0.0]
ディープラーニングモデルのトレーニングには大きなラベル付きデータセットが必要であるが、超音波画像では利用できないことが多い。
我々は、大規模データ拡張と転送学習の利点を組み合わせた、ジェネレーティブ・アドバイサル・ネットワーク(ACGAN)を利用する。
乳房超音波画像のデータセットを用いて,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2021-01-31T11:11:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。