PerturBench: Benchmarking Machine Learning Models for Cellular Perturbation Analysis
- URL: http://arxiv.org/abs/2408.10609v3
- Date: Tue, 17 Jun 2025 00:37:47 GMT
- Title: PerturBench: Benchmarking Machine Learning Models for Cellular Perturbation Analysis
- Authors: Yan Wu, Esther Wershof, Sebastian M Schmon, Marcel Nassar, Błażej Osiński, Ridvan Eksi, Zichao Yan, Rory Stark, Kun Zhang, Thore Graepel,
- Abstract summary: We introduce a comprehensive framework for perturbation response modeling in single cells.<n>Our approach includes a modular and user-friendly model development and evaluation platform.<n>We highlight the limitations of widely used models, such as mode collapse.
- Score: 14.298235969992877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a comprehensive framework for perturbation response modeling in single cells, aimed at standardizing benchmarking in this rapidly evolving field. Our approach includes a modular and user-friendly model development and evaluation platform, a collection of diverse perturbational datasets, and a set of metrics designed to fairly compare models and dissect their performance nuances. Through extensive evaluation of both published and baseline models across diverse datasets, we highlight the limitations of widely used models, such as mode collapse. We also demonstrate the importance of rank metrics which complement traditional model fit measures, such as RMSE, for validating model effectiveness. Notably, our results show that while no single model architecture clearly outperforms others, simpler architectures are generally competitive and scale well with larger datasets. Overall, this benchmarking exercise sets new standards for model evaluation, supports robust model development, and advances the potential of these models to use high-throughput genetic and chemical screens for disease target discovery.
Related papers
- On the Reasoning Capacity of AI Models and How to Quantify It [0.0]
Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities.
While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks.
We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior.
arXiv Detail & Related papers (2025-01-23T16:58:18Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - Scaling Laws Across Model Architectures: A Comparative Analysis of Dense and MoE Models in Large Language Models [34.79589443380606]
The scaling of large language models (LLMs) is a critical research area for the efficiency and effectiveness of model training and deployment.
Our work investigates the transferability and discrepancies of scaling laws between Dense Models and MoE models.
arXiv Detail & Related papers (2024-10-08T03:21:56Z) - Challenging the Performance-Interpretability Trade-off: An Evaluation of Interpretable Machine Learning Models [3.3595341706248876]
Generalized additive models (GAMs) offer promising properties for capturing complex, non-linear patterns while remaining fully interpretable.
This study examines the predictive performance of seven different GAMs in comparison to seven commonly used machine learning models based on a collection of twenty benchmark datasets.
arXiv Detail & Related papers (2024-09-22T12:58:52Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Comparing Foundation Models using Data Kernels [13.099029073152257]
We present a methodology for directly comparing the embedding space geometry of foundation models.
Our methodology is grounded in random graph theory and enables valid hypothesis testing of embedding similarity.
We show how our framework can induce a manifold of models equipped with a distance function that correlates strongly with several downstream metrics.
arXiv Detail & Related papers (2023-05-09T02:01:07Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity.
We demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions.
arXiv Detail & Related papers (2023-03-14T14:10:37Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
We propose a fully Bayesian framework for learning ground truth labels from noisy annotators.
Our framework ensures scalability by factoring a generative, Bayesian soft clustering model over label distributions into the classic David and Skene joint annotator-data model.
arXiv Detail & Related papers (2021-06-20T02:15:20Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.