Human-Inspired Framework to Accelerate Reinforcement Learning
- URL: http://arxiv.org/abs/2303.08115v3
- Date: Mon, 11 Mar 2024 22:08:41 GMT
- Title: Human-Inspired Framework to Accelerate Reinforcement Learning
- Authors: Ali Beikmohammadi and Sindri Magn\'usson
- Abstract summary: Reinforcement learning (RL) is crucial for data science decision-making but suffers from sample inefficiency.
This paper introduces a novel human-inspired framework to enhance RL algorithm sample efficiency.
- Score: 1.6317061277457001
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning (RL) is crucial for data science decision-making but
suffers from sample inefficiency, particularly in real-world scenarios with
costly physical interactions. This paper introduces a novel human-inspired
framework to enhance RL algorithm sample efficiency. It achieves this by
initially exposing the learning agent to simpler tasks that progressively
increase in complexity, ultimately leading to the main task. This method
requires no pre-training and involves learning simpler tasks for just one
iteration. The resulting knowledge can facilitate various transfer learning
approaches, such as value and policy transfer, without increasing computational
complexity. It can be applied across different goals, environments, and RL
algorithms, including value-based, policy-based, tabular, and deep RL methods.
Experimental evaluations demonstrate the framework's effectiveness in enhancing
sample efficiency, especially in challenging main tasks, demonstrated through
both a simple Random Walk and more complex optimal control problems with
constraints.
Related papers
- Sample-Efficient Reinforcement Learning with Temporal Logic Objectives: Leveraging the Task Specification to Guide Exploration [13.053013407015628]
This paper addresses the problem of learning optimal control policies for systems with uncertain dynamics.
We propose an accelerated RL algorithm that can learn control policies significantly faster than competitive approaches.
arXiv Detail & Related papers (2024-10-16T00:53:41Z) - Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation [0.7564784873669823]
We propose Multimodal Contrastive Unsupervised Reinforcement Learning (M2CURL)
Our approach employs a novel multimodal self-supervised learning technique that learns efficient representations and contributes to faster convergence of RL algorithms.
We evaluate M2CURL on the Tactile Gym 2 simulator and we show that it significantly enhances the learning efficiency in different manipulation tasks.
arXiv Detail & Related papers (2024-01-30T14:09:35Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
We introduce an efficient system for learning dexterous manipulation skills withReinforcement learning.
The main idea of our approach is the integration of recent advances in sample-efficient RL and replay buffer bootstrapping.
Our system completes the real-world training cycle by incorporating learned resets via an imitation-based pickup policy.
arXiv Detail & Related papers (2023-09-06T19:05:31Z) - The Cost of Learning: Efficiency vs. Efficacy of Learning-Based RRM for
6G [10.28841351455586]
Deep Reinforcement Learning (DRL) has become a valuable solution to automatically learn efficient resource management strategies in complex networks.
In many scenarios, the learning task is performed in the Cloud, while experience samples are generated directly by edge nodes or users.
This creates a friction between the need to speed up convergence towards an effective strategy, which requires the allocation of resources to transmit learning samples.
We propose a dynamic balancing strategy between the learning and data planes, which allows the centralized learning agent to quickly converge to an efficient resource allocation strategy.
arXiv Detail & Related papers (2022-11-30T11:26:01Z) - Meta Reinforcement Learning with Successor Feature Based Context [51.35452583759734]
We propose a novel meta-RL approach that achieves competitive performance comparing to existing meta-RL algorithms.
Our method does not only learn high-quality policies for multiple tasks simultaneously but also can quickly adapt to new tasks with a small amount of training.
arXiv Detail & Related papers (2022-07-29T14:52:47Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Lean Evolutionary Reinforcement Learning by Multitasking with Importance
Sampling [20.9680985132322]
We introduce a novel neuroevolutionary multitasking (NuEMT) algorithm to transfer information from a set of auxiliary tasks to the target (full length) RL task.
We demonstrate that the NuEMT algorithm data-lean evolutionary RL, reducing expensive agent-environment interaction data requirements.
arXiv Detail & Related papers (2022-03-21T10:06:16Z) - Reset-Free Reinforcement Learning via Multi-Task Learning: Learning
Dexterous Manipulation Behaviors without Human Intervention [67.1936055742498]
We show that multi-task learning can effectively scale reset-free learning schemes to much more complex problems.
This work shows the ability to learn dexterous manipulation behaviors in the real world with RL without any human intervention.
arXiv Detail & Related papers (2021-04-22T17:38:27Z) - Improved Context-Based Offline Meta-RL with Attention and Contrastive
Learning [1.3106063755117399]
We improve upon one of the SOTA OMRL algorithms, FOCAL, by incorporating intra-task attention mechanism and inter-task contrastive learning objectives.
Theoretical analysis and experiments are presented to demonstrate the superior performance, efficiency and robustness of our end-to-end and model free method.
arXiv Detail & Related papers (2021-02-22T05:05:16Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.