論文の概要: Graph Neural Network Surrogates of Fair Graph Filtering
- arxiv url: http://arxiv.org/abs/2303.08157v1
- Date: Tue, 14 Mar 2023 18:14:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 15:52:16.160222
- Title: Graph Neural Network Surrogates of Fair Graph Filtering
- Title(参考訳): グラフニューラルネットワークによるフェアグラフフィルタリング
- Authors: Emmanouil Krasanakis, Symeon Papadopulos
- Abstract要約: 後続目的に対するフィルタ対応ユニバーサル近似フレームワークを提案する。
これにより、実行時にトレーニングされた適切なグラフニューラルネットワークが、フィルタと同じようなものになる。
私たちは、パリティ制約を満たす際の代替手段よりも、我々のアプローチが等しく良いか、あるいは優れていることを示しています。
- 参考スコア(独自算出の注目度): 3.655021726150368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph filters that transform prior node values to posterior scores via edge
propagation often support graph mining tasks affecting humans, such as
recommendation and ranking. Thus, it is important to make them fair in terms of
satisfying statistical parity constraints between groups of nodes (e.g.,
distribute score mass between genders proportionally to their representation).
To achieve this while minimally perturbing the original posteriors, we
introduce a filter-aware universal approximation framework for posterior
objectives. This defines appropriate graph neural networks trained at runtime
to be similar to filters but also locally optimize a large class of objectives,
including fairness-aware ones. Experiments on a collection of 8 filters and 5
graphs show that our approach performs equally well or better than alternatives
in meeting parity constraints while preserving the AUC of score-based community
member recommendation and creating minimal utility loss in prior diffusion.
- Abstract(参考訳): 先行ノード値から後続スコアに変換するグラフフィルタは、リコメンデーションやランキングなど、人間に影響を与えるグラフマイニングタスクをサポートすることが多い。
したがって、ノード群間の統計的パリティ制約(例えば、その表現に比例して性別間でスコアの質量を分配する)を満たす観点から、それらを公平にすることが重要である。
元の後方を最小限に摂動しながらこれを実現するため,後方目標に対するフィルタ対応普遍近似フレームワークを提案する。
これは、実行時にフィルタに類似するようにトレーニングされた適切なグラフニューラルネットワークを定義すると同時に、フェアネスを認識できるものを含む、大きな目的のクラスをローカルに最適化する。
8つのフィルタと5つのグラフの集合に対する実験により、我々のアプローチは、スコアベースのコミュニティメンバー推薦のAUCを維持しつつ、事前拡散の最小限のユーティリティ損失を発生させながら、パリティ制約を満たす方法よりも同等かそれ以上に優れていることが示された。
関連論文リスト
- How Powerful is Graph Filtering for Recommendation [7.523823738965443]
グラフフィルタリングのパワーを抑制する2つの制限を示す。
様々なノイズ分布のため、グラフフィルタは全ての周波数にノイズが散らばっているスパースデータを劣化させることができない。
教師付きトレーニングは、トレーニングなしでグラフフィルタによって除去できる中周波数にノイズが集中している高密度データに対して、より悪いパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2024-06-13T05:37:54Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - DiP-GNN: Discriminative Pre-Training of Graph Neural Networks [49.19824331568713]
GNNのパワーを高めるために,グラフニューラルネットワーク(GNN)事前学習法が提案されている。
一般的な事前トレーニング手法の1つは、エッジのパーセンテージをマスクアウトすることであり、GNNはそれらを回復するように訓練されている。
筆者らのフレームワークでは, 識別器が見るグラフは, マスキングエッジの比率を回復できるため, 元のグラフとよく一致している。
論文 参考訳(メタデータ) (2022-09-15T17:41:50Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Graph filtering over expanding graphs [14.84852576248587]
本稿では,拡張グラフ上のデータに対するフィルタ学習手法を提案する。
正確なトポロジに依存するベースラインと比較して,ほぼ最適性能を示す。
これらの知見は、接続モデルのみに依存することにより、グラフの拡張よりも表現を学習するための基礎を築いた。
論文 参考訳(メタデータ) (2022-03-15T16:50:54Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
グラフニューラルネットワーク(GNN)のスケーラビリティは、マシンラーニングにおける大きな課題のひとつだ。
本稿では,GNNのスケーラブルなトレーニングにグラフ粗大化を用いることを提案する。
既成の粗大化法を単純に適用すれば,分類精度を著しく低下させることなく,ノード数を最大10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T15:46:17Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。