論文の概要: Learning From High-Dimensional Cyber-Physical Data Streams for
Diagnosing Faults in Smart Grids
- arxiv url: http://arxiv.org/abs/2303.08300v1
- Date: Wed, 15 Mar 2023 01:21:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 15:04:02.104323
- Title: Learning From High-Dimensional Cyber-Physical Data Streams for
Diagnosing Faults in Smart Grids
- Title(参考訳): スマートグリッドの故障診断のための高次元サイバー物理データストリームからの学習
- Authors: Hossein Hassani and Ehsan Hallaji and Roozbeh Razavi-Far and Mehrdad
Saif
- Abstract要約: サイバー物理電力システムにおける故障診断は、データ品質に影響される。
これらのシステムは、過剰な計算コストでシステムを過大評価する大量のデータを生成する。
本稿では,機能工学が上記の課題を緩和する効果について述べる。
- 参考スコア(独自算出の注目度): 4.616703548353371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of fault diagnosis systems is highly affected by data quality
in cyber-physical power systems. These systems generate massive amounts of data
that overburden the system with excessive computational costs. Another issue is
the presence of noise in recorded measurements, which prevents building a
precise decision model. Furthermore, the diagnostic model is often provided
with a mixture of redundant measurements that may deviate it from learning
normal and fault distributions. This paper presents the effect of feature
engineering on mitigating the aforementioned challenges in cyber-physical
systems. Feature selection and dimensionality reduction methods are combined
with decision models to simulate data-driven fault diagnosis in a 118-bus power
system. A comparative study is enabled accordingly to compare several advanced
techniques in both domains. Dimensionality reduction and feature selection
methods are compared both jointly and separately. Finally, experiments are
concluded, and a setting is suggested that enhances data quality for fault
diagnosis.
- Abstract(参考訳): 故障診断システムの性能は,サイバー物理電力システムにおけるデータ品質に大きく影響する。
これらのシステムは、過剰な計算コストでシステムを過大評価する大量のデータを生成する。
もうひとつの問題は、記録された測定値におけるノイズの存在であり、正確な決定モデルの構築を妨げている。
さらに、診断モデルは、通常と断層分布の学習から逸脱する可能性のある冗長な測定の混合がしばしば提供される。
本稿では,サイバー物理システムにおける上記の課題を緩和する機能工学の影響について述べる。
118バス電力系統におけるデータ駆動故障診断をシミュレートする決定モデルと特徴選択法と次元低減法を組み合わせる。
比較研究は、両方のドメインでいくつかの高度な技術を比較するために有効である。
寸法低減法と特徴選択法を共同で別々に比較する。
最後に, 実験を終了し, 故障診断のためのデータ品質を向上させる設定を提案する。
関連論文リスト
- Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - A Multimodal Data-driven Framework for Anxiety Screening [15.002401707506941]
我々は,MMD-ASというデータ駆動型不安スクリーニングフレームワークを提案し,スマートフォンによる200人以上の船員の健康データ収集実験を行った。
モデルの性能向上のために,提案フレームワークの特徴抽出,次元縮小,特徴選択,不安推定を共同で訓練した。
論文 参考訳(メタデータ) (2023-03-16T02:25:05Z) - Machine learning-based approach for online fault Diagnosis of Discrete
Event System [0.0]
問題は、センサーとアクチュエータが個別のバイナリ信号を提供する自動生産システムのオンライン診断である。
本稿では,診断システムの機械学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-10-24T08:56:13Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - Hybrid AI-based Anomaly Detection Model using Phasor Measurement Unit
Data [0.41998444721319217]
ファサー計測装置(PMU)を用いて電力システムを監視することは、将来有望な技術の一つである。
サイバー物理的相互作用の増加は、利点と欠点の両方をもたらし、そこでは、測定データの異常の形で欠点の1つが生まれる。
本稿では,PMUデータにおける異常検出の様々な手法に基づくハイブリッドAIベースモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2022-09-21T11:22:01Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
人為的なシステムのレジリエンスを、予期せぬ事象に対して向上させるためのエンドツーエンドのフレームワークを実証する。
このフレームワークは物理ベースのデジタルツインモデルと,リアルタイム故障診断,予後,再構成を行う3つのモジュールに基づいている。
論文 参考訳(メタデータ) (2022-08-30T20:16:17Z) - Application of federated learning techniques for arrhythmia
classification using 12-lead ECG signals [0.11184789007828977]
この作業では、フェデレートラーニング(FL)プライバシ保護方法論を使用して、高定義のECGの異種集合上でAIモデルをトレーニングする。
CL, IID, 非IIDアプローチを用いて訓練したモデルと比較した。
論文 参考訳(メタデータ) (2022-08-23T14:21:16Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
症状検査システムは、患者に症状を問い合わせ、迅速で手頃な価格の医療評価を行う。
本稿では,論理正則化を用いたニューラルネットワークの教師付き学習に基づく新しい手法を提案する。
以上の結果から,本手法は診断回数や症状が大きい場合の診断精度において,最も優れた方法であることがわかった。
論文 参考訳(メタデータ) (2022-06-02T07:57:17Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
データ駆動型故障診断・隔離方式は, 燃料供給システムにおける故障とセンサ測定のために, 明確に開発されている。
モデルは機械学習の分類器を使用してトレーニングされ、トレーニングされた障害シナリオのセットをリアルタイムで検出する。
提案手法の利点, 性能, 性能を実証し, 実証するために, いくつかのシミュレーション実験を行った。
論文 参考訳(メタデータ) (2021-10-17T13:42:37Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
物理モデルと利用可能なトレーニングデータを組み合わせたハイブリッド故障診断手法は有望な結果を示した。
システムモデルの二部グラフ表現を用いて自動残差設計を行い、グレーボックス再帰ニューラルネットワークを設計する。
内燃機関テストベンチからのデータは、機械学習とモデルに基づく故障診断技術を組み合わせる可能性を示すために使用される。
論文 参考訳(メタデータ) (2020-08-11T11:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。