論文の概要: Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration
- arxiv url: http://arxiv.org/abs/2310.17471v1
- Date: Thu, 26 Oct 2023 15:19:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 19:36:30.993205
- Title: Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration
- Title(参考訳): Cloud-Edge-Endコラボレーションによる6Gのファンデーションモデルに基づくネイティブAIフレームワーク
- Authors: Xiang Chen, Zhiheng Guo, Xijun Wang, Howard H. Yang, Chenyuan Feng,
Junshen Su, Sihui Zheng, Tony Q. S. Quek
- Abstract要約: 基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
- 参考スコア(独自算出の注目度): 56.330705072736166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future wireless communication networks are in a position to move beyond
data-centric, device-oriented connectivity and offer intelligent, immersive
experiences based on task-oriented connections, especially in the context of
the thriving development of pre-trained foundation models (PFM) and the
evolving vision of 6G native artificial intelligence (AI). Therefore,
redefining modes of collaboration between devices and servers and constructing
native intelligence libraries become critically important in 6G. In this paper,
we analyze the challenges of achieving 6G native AI from the perspectives of
data, intelligence, and networks. Then, we propose a 6G native AI framework
based on foundation models, provide a customization approach for intent-aware
PFM, present a construction of a task-oriented AI toolkit, and outline a novel
cloud-edge-end collaboration paradigm. As a practical use case, we apply this
framework for orchestration, achieving the maximum sum rate within a wireless
communication system, and presenting preliminary evaluation results. Finally,
we outline research directions for achieving native AI in 6G.
- Abstract(参考訳): 将来の無線通信ネットワークは、データ中心のデバイス指向の接続を超えて、タスク指向の接続に基づくインテリジェントで没入的なエクスペリエンスを提供する立場にある。
したがって、6gではデバイスとサーバ間のコラボレーションモードの再定義とネイティブインテリジェンスライブラリの構築が極めて重要である。
本稿では,データ,インテリジェンス,ネットワークの観点から,6GネイティブAIを実現する上での課題を分析する。
次に、基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、タスク指向AIツールキットの構築を示し、新しいクラウド-エッジコラボレーションパラダイムの概要を示す。
実用的なユースケースとして,このフレームワークをオーケストレーションに適用し,無線通信システム内で最大和率を達成し,予備評価結果を示す。
最後に,6gでネイティブaiを実現するための研究方向について概説する。
関連論文リスト
- Generative AI Enabled Matching for 6G Multiple Access [51.00960374545361]
我々は6G多重アクセスをサポートするGenAI対応マッチング生成フレームワークを提案する。
我々のフレームワークは、与えられた条件と事前定義された報酬に基づいて、より効果的なマッチング戦略を生成することができることを示す。
論文 参考訳(メタデータ) (2024-10-29T13:01:26Z) - Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems [31.754166695074353]
本稿では、大規模にデプロイされた6GネットワークにAIを統合するための分散マルチパーティ・マルチネットワークAI(DMMAI)フレームワークを紹介する。
DMMAIは、さまざまなネットワークプラットフォームにわたるAI駆動コントロールを調和させ、自らを自律的に構成、監視、修復するネットワークを促進する。
弊社のアプローチでは、マルチネットワークオーケストレーションとAIコントロールの統合について検討し、6GネットワークにおけるAI駆動のコーディネーションのための標準フレームワークにおける重要なギャップを埋める。
論文 参考訳(メタデータ) (2024-04-15T15:21:25Z) - AI-native Interconnect Framework for Integration of Large Language Model
Technologies in 6G Systems [3.5370806221677245]
本稿では,Large Language Models (LLM) とGeneralized Pretrained Transformer (GPT) のシームレスな統合を6Gシステムで検討する。
LLMとGPTは、従来の前世代のAIと機械学習(ML)アルゴリズムとともに、共同で中心的なステージに立つ。
論文 参考訳(メタデータ) (2023-11-10T02:59:16Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
フェデレーテッド・ラーニング(FL)は、6GネットワークでユビキタスAIを実現するための重要な実現手段として期待されている。
6Gネットワークにおける有効かつ効率的なFL実装には、いくつかのシステムおよび統計的不均一性の課題がある。
本稿では,これらの課題に効果的に対処できる最適化手法について検討する。
論文 参考訳(メタデータ) (2023-03-15T02:18:21Z) - In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situモデルダウンロードは、ネットワーク内のAIライブラリからダウンロードすることで、デバイス上のAIモデルを透過的でリアルタイムに置き換えることを目的としている。
提示されたフレームワークの重要なコンポーネントは、ダウンロードされたモデルを深さレベル、パラメータレベル、ビットレベルで動的に圧縮する一連のテクニックである。
我々は,3層(エッジ,ローカル,中央)AIライブラリのキー機能を備えた,インサイトモデルダウンロードのデプロイ用にカスタマイズされた6Gネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T13:41:15Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
6Gとフェデレーション学習の統合を導入し、6Gのための潜在的なフェデレーション学習アプリケーションを提供する。
6G通信の文脈において,重要な技術的課題,それに対応するフェデレーション学習手法,および今後のフェデレーション学習研究のためのオープンな課題について述べる。
論文 参考訳(メタデータ) (2020-06-04T15:17:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。