論文の概要: Stationary Two-State System in Optics using Layered Materials
- arxiv url: http://arxiv.org/abs/2303.08395v2
- Date: Tue, 4 Jul 2023 07:50:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 22:46:04.290486
- Title: Stationary Two-State System in Optics using Layered Materials
- Title(参考訳): 層状材料を用いた光学系の定常2状態系
- Authors: Ken-ichi Sasaki
- Abstract要約: 我々は2つの定常量子状態を構築し、1つは光の散乱と吸収を再現する。
番号は2/pi alpha$で、$pi alpha$は単一表面の吸収確率である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When electrodynamics is quantized in a situation where the electrons exist
only at a flat surface such as graphene, one of the Maxwell equations appears
as a local part of the Hamiltonian. As a consequence of gauge invariance, any
physical state has to be a zero-energy state of the local Hamiltonian. We
construct two stationary quantum states; one reproduces scattering and
absorption of light, which is familiar in classical optics and the other is
more fundamentally related to photon creation. These two states are inseparable
by the Hamiltonian and forming a two-state system, but there is a special
number of surfaces for which two states are decoupled. The number is $2/\pi
\alpha$ where $\pi \alpha$ is the absorption probability of single surface.
- Abstract(参考訳): グラフェンのような平坦な面にのみ電子が存在する状況で電気力学が量子化されると、マクスウェル方程式の1つがハミルトニアンの局所部分として現れる。
ゲージ不変性の結果、任意の物理的状態は局所ハミルトニアンのゼロエネルギー状態である必要がある。
我々は2つの定常量子状態を構築し、一方は光の散乱と吸収を再現し、他方は古典光学に精通している。
これらの2つの状態はハミルトニアンによって分離され、2つの状態系を形成するが、2つの状態が分離される特別な数の曲面が存在する。
数値は 2/\pi \alpha$ であり、$\pi \alpha$ は単面の吸収確率である。
関連論文リスト
- Non-Hermitian Effects in Dicke models [18.25522741939446]
我々はDickeモデルにおける非エルミート効果の顕在化について検討した。
我々は,光-物質相互作用における非エルミート物理学の理解を深めた。
論文 参考訳(メタデータ) (2024-11-13T06:30:10Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
理論的には、1次元導波路に対して動く2レベル量子ビットの配列について検討する。
この運動の周波数が2倍のクビット共鳴周波数に近づくと、光子のパラメトリック生成と量子ビットの励起を誘導する。
我々は、摂動図式技術と厳密なマスター方程式アプローチの両方を取り入れた包括的一般理論フレームワークを開発する。
論文 参考訳(メタデータ) (2024-08-30T15:54:33Z) - Photon bunching in high-harmonic emission controlled by quantum light [0.0]
最近の理論は、量子光学特性が高磁場フォトニクスにどのように影響するかを理解するための基礎を築いた。
我々は、強磁場非線形性を通じて量子光学状態のいくつかの特性を伝達する新しい実験的アプローチを示す。
この結果から、量子光学状態による強磁場力学の摂動は、これらの状態の発生を短波長でコヒーレントに制御するための有効な方法であることが示唆された。
論文 参考訳(メタデータ) (2024-04-08T12:53:42Z) - A theory of local photons with applications in quantum field theory [0.0]
量子光学では、電磁場、光子の基本エネルギー量子を単色波で記述することが普通である。
1次元と3次元の両方で、完全に局所化された量子の観点で自由なEM場を定量化する。
ここでは、標準量子化方式とは異なり、本手法は局所化フォトニック波パケットの因果伝播を予測する。
論文 参考訳(メタデータ) (2023-03-08T16:47:09Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
系の境界に結合した1つ以上のエミッタの自然崩壊を研究することにより、フェルミ弧の撮影方法を示す。
我々はフェルミの弧面状態がロバストな量子リンクとして振る舞うことを実証した。
論文 参考訳(メタデータ) (2022-10-17T13:17:55Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
格子ゲージ理論(LGT)の量子シミュレーションは、非摂動粒子と凝縮物質物理学に取り組むことを目的としている。
現在の課題の1つは、量子シミュレーション装置に自然に含まれない4体(プラケット)相互作用が現れる1+1次元を超えることである。
原子物理学の最先端技術を用いて基底状態の調製とウィルソンループの測定方法を示す。
論文 参考訳(メタデータ) (2021-07-27T18:10:08Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
我々は、コヒーレント場によって駆動される相互作用する2つの非負の量子エミッタのシステムについて研究する。
共鳴蛍光スペクトルに2光子ダイナミクスによって印加された特徴は、エミッタ間の距離の変化に特に敏感である。
これは、ポイントライクなソースの超解像イメージングのような応用に利用することができる。
論文 参考訳(メタデータ) (2021-06-04T16:13:01Z) - Linear-optical dynamics of one-dimensional anyons [0.0]
一次元格子上に定義されたボソニックおよびフェルミオン性エノンのダイナミクスについて検討する。
これらの粒子が示すアハロノフ・ボーム効果を利用して、決定論的に絡み合った2量子ゲートを構築する方法を示す。
特に、交換係数の特定の値に対して、正準ミラーが猫の状態を生成することを証明している。
論文 参考訳(メタデータ) (2020-12-23T20:48:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
ワイル光子は、線形分散を持つ2つの3次元フォトニックバンドが単一の運動量点で退化してワイル点とラベル付けされるときに現れる。
ワイル光浴に結合した単一量子エミッタのダイナミクスをワイル点に対する変形関数として解析する。
論文 参考訳(メタデータ) (2020-12-23T18:51:13Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
単一励起部分空間における導波路と移動量子エミッタで構成されるシステムについて検討する。
まず、単一移動量子エミッタからの単一光子散乱を特徴付け、非相互伝達とリコイル誘起の量子エミッタ運動エネルギーの低減の両方を示す。
論文 参考訳(メタデータ) (2020-03-20T12:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。