論文の概要: MAHTM: A Multi-Agent Framework for Hierarchical Transactive Microgrids
- arxiv url: http://arxiv.org/abs/2303.08447v1
- Date: Wed, 15 Mar 2023 08:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 18:16:32.416267
- Title: MAHTM: A Multi-Agent Framework for Hierarchical Transactive Microgrids
- Title(参考訳): MAHTM:階層的トランスアクティブマイクログリッドのためのマルチエージェントフレームワーク
- Authors: Nicolas Cuadrado, Roberto Gutierrez, Yongli Zhu, Martin Takac
- Abstract要約: 本稿では,マイクログリッド内のエネルギー取引を管理するためのマルチエージェント強化学習フレームワークを提案する。
炭素フットプリントを最小化し、すべての利害関係者に利益を与えることで、利用可能なリソースの使用を最適化することを目指している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating variable renewable energy into the grid has posed challenges to
system operators in achieving optimal trade-offs among energy availability,
cost affordability, and pollution controllability. This paper proposes a
multi-agent reinforcement learning framework for managing energy transactions
in microgrids. The framework addresses the challenges above: it seeks to
optimize the usage of available resources by minimizing the carbon footprint
while benefiting all stakeholders. The proposed architecture consists of three
layers of agents, each pursuing different objectives. The first layer,
comprised of prosumers and consumers, minimizes the total energy cost. The
other two layers control the energy price to decrease the carbon impact while
balancing the consumption and production of both renewable and conventional
energy. This framework also takes into account fluctuations in energy demand
and supply.
- Abstract(参考訳): 電力網への可変再生可能エネルギーの統合は、エネルギーの可利用性、コストの可利用性、汚染の制御性の間の最適なトレードオフを達成する上で、システムオペレーターに課題を提起している。
本稿では,マイクログリッドにおけるエネルギートランザクションを管理するマルチエージェント強化学習フレームワークを提案する。
すべての利害関係者の利益を享受しながら、カーボンフットプリントを最小化し、利用可能なリソースの使用を最適化することを目指している。
提案されたアーキテクチャはエージェントの3つのレイヤで構成され、それぞれ異なる目的を追求する。
第1層はプロシューマーと消費者で構成され、総エネルギーコストを最小化する。
他の2つの層は、再生可能エネルギーと従来のエネルギーの両方の消費と生産のバランスを保ちながら、炭素の衝突を減らすエネルギー価格を制御する。
この枠組みはエネルギー需要と供給の変動も考慮している。
関連論文リスト
- EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
本稿では,MARL(Multi-Agent Reinforcement Learning)エネルギー管理フレームワークであるEnergAIzeを紹介する。
ユーザ中心の多目的エネルギー管理を可能にし、各プローサが様々な個人管理目標から選択できるようにする。
EnergAIzeの有効性は、CityLearnシミュレーションフレームワークを用いたケーススタディにより評価された。
論文 参考訳(メタデータ) (2024-04-02T23:16:17Z) - Peer-to-Peer Energy Trading of Solar and Energy Storage: A Networked Multiagent Reinforcement Learning Approach [5.671124014371425]
我々は,ソーラーPVとエネルギー貯蔵資源の消費者の入札と管理を自動化するために,マルチエージェント強化学習(MARL)フレームワークを提案する。
我々は、MARLフレームワークが物理的ネットワーク制約を統合して電圧制御を実現し、P2Pエネルギートレーディングの物理的実現性を確保する方法を示す。
論文 参考訳(メタデータ) (2024-01-25T05:05:55Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Power Grid Congestion Management via Topology Optimization with
AlphaZero [0.27998963147546135]
本稿では,AlphaZeroをベースとしたグリッドトポロジ最適化手法を提案する。
WCCI 2022ではL2RPN(Learning to Run a Power Network)コンペで1位にランクインした。
論文 参考訳(メタデータ) (2022-11-10T14:39:28Z) - Renewable energy integration and microgrid energy trading using
multi-agent deep reinforcement learning [2.0427610089943387]
マルチエージェント強化学習はハイブリッドエネルギー貯蔵システムを制御するために使用される。
エージェントは、短期、中長期、長期の記憶に適した3種類のエネルギー貯蔵システムを制御することを学ぶ。
電力網に売るのではなく、他のマイクログリッドと取引できることは、電力網の貯蓄を大幅に増加させることが判明した。
論文 参考訳(メタデータ) (2021-11-21T21:11:00Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
気候変動の影響を制限するため、低炭素電力供給への移行が不可欠である。
二酸化炭素排出量の削減は、世界がピーク点に達するのを防ぐのに役立ちます。
排気ガスの排出は、世界中の気象条件の極端に繋がる可能性がある。
論文 参考訳(メタデータ) (2021-09-25T12:37:05Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
本稿では,マイクログリッドを支配下に置くために,強化学習に基づくエネルギー市場を提案する。
提案する市場モデルにより,リアルタイムかつ需要に依存した動的価格設定環境が実現され,グリッドコストが低減され,消費者の経済的利益が向上する。
論文 参考訳(メタデータ) (2020-09-23T02:17:51Z) - A Hierarchical Approach to Multi-Energy Demand Response: From
Electricity to Multi-Energy Applications [1.5084441395740482]
本稿では,多くの住宅,商業,産業の消費者の集合体のエネルギー消費を制御する機会を探る。
このアンサンブル制御は、マルチエネルギーインフラシステムのモデリングツールのセットへの現代的な需要応答となる。
論文 参考訳(メタデータ) (2020-05-05T17:17:51Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。