On the uncertainty analysis of the data-enabled physics-informed neural
network for solving neutron diffusion eigenvalue problem
- URL: http://arxiv.org/abs/2303.08455v3
- Date: Fri, 17 Mar 2023 09:28:19 GMT
- Title: On the uncertainty analysis of the data-enabled physics-informed neural
network for solving neutron diffusion eigenvalue problem
- Authors: Yu Yang, Helin Gong, Qihong Yang, Yangtao Deng, Qiaolin He, Shiquan
Zhang
- Abstract summary: We investigate the performance of DEPINN in calculating the neutron diffusion eigenvalue problem from several perspectives.
In order to reduce the effect of noise and improve the utilization of the noisy prior data, we propose innovative interval loss functions.
This paper confirms the feasibility of the improved DEPINN for practical engineering applications in nuclear reactor physics.
- Score: 4.0275959184316825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practical engineering experiments, the data obtained through detectors are
inevitably noisy. For the already proposed data-enabled physics-informed neural
network (DEPINN) \citep{DEPINN}, we investigate the performance of DEPINN in
calculating the neutron diffusion eigenvalue problem from several perspectives
when the prior data contain different scales of noise. Further, in order to
reduce the effect of noise and improve the utilization of the noisy prior data,
we propose innovative interval loss functions and give some rigorous
mathematical proofs. The robustness of DEPINN is examined on two typical
benchmark problems through a large number of numerical results, and the
effectiveness of the proposed interval loss function is demonstrated by
comparison. This paper confirms the feasibility of the improved DEPINN for
practical engineering applications in nuclear reactor physics.
Related papers
- Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Learning Provably Robust Estimators for Inverse Problems via Jittering [51.467236126126366]
We investigate whether jittering, a simple regularization technique, is effective for learning worst-case robust estimators for inverse problems.
We show that jittering significantly enhances the worst-case robustness, but can be suboptimal for inverse problems beyond denoising.
arXiv Detail & Related papers (2023-07-24T14:19:36Z) - Efficient Bayesian inference using physics-informed invertible neural
networks for inverse problems [6.97393424359704]
We introduce an innovative approach for addressing Bayesian inverse problems through the utilization of physics-informed invertible neural networks (PI-INN)
The PI-INN offers a precise and efficient generative model for Bayesian inverse problems, yielding tractable posterior density estimates.
As a particular physics-informed deep learning model, the primary training challenge for PI-INN centers on enforcing the independence constraint.
arXiv Detail & Related papers (2023-04-25T03:17:54Z) - Efficient Bayesian Physics Informed Neural Networks for Inverse Problems
via Ensemble Kalman Inversion [0.0]
We present a new efficient inference algorithm for B-PINNs that uses Ensemble Kalman Inversion (EKI) for high-dimensional inference tasks.
We find that our proposed method can achieve inference results with informative uncertainty estimates comparable to Hamiltonian Monte Carlo (HMC)-based B-PINNs with a much reduced computational cost.
arXiv Detail & Related papers (2023-03-13T18:15:26Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Robust Regression with Highly Corrupted Data via Physics Informed Neural
Networks [4.642273921499256]
Physics-informed neural networks (PINNs) have been proposed to solve two main classes of problems.
We show the generalizability, accuracy and efficiency of the proposed algorithms for recovering governing equations from noisy and corrupted measurement data.
arXiv Detail & Related papers (2022-10-19T15:21:05Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Evaluating the Adversarial Robustness for Fourier Neural Operators [78.36413169647408]
Fourier Neural Operator (FNO) was the first to simulate turbulent flow with zero-shot super-resolution.
We generate adversarial examples for FNO based on norm-bounded data input perturbations.
Our results show that the model's robustness degrades rapidly with increasing perturbation levels.
arXiv Detail & Related papers (2022-04-08T19:19:42Z) - Physics-informed deep-learning applications to experimental fluid
mechanics [2.992602379681373]
High-resolution reconstruction of flow-field data from low-resolution and noisy measurements is of interest in experimental fluid mechanics.
Deep-learning approaches have been shown suitable for such super-resolution tasks.
In this study, we apply physics-informed neural networks (PINNs) for super-resolution of flow-field data in time and space.
arXiv Detail & Related papers (2022-03-29T09:58:30Z) - Physics-guided Loss Functions Improve Deep Learning Performance in
Inverse Scattering [13.529767949868248]
Deep neural network (DNN) techniques have been successfully applied on electromagnetic inverse scattering problems.
We show how important physical phenomena cannot be effectively incorporated in the training process.
We propose new designs of loss functions which incorporate multiple-scattering based near-field quantities.
arXiv Detail & Related papers (2021-11-13T16:36:23Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.