Efficient Uncertainty Estimation with Gaussian Process for Reliable
Dialog Response Retrieval
- URL: http://arxiv.org/abs/2303.08599v1
- Date: Wed, 15 Mar 2023 13:12:16 GMT
- Title: Efficient Uncertainty Estimation with Gaussian Process for Reliable
Dialog Response Retrieval
- Authors: Tong Ye, Zhitao Li, Jianzong Wang, Ning Cheng, Jing Xiao
- Abstract summary: We propose an efficient uncertainty calibration framework GPF-BERT for BERT-based conversational search.
In comparison with basic calibration methods, GPF-BERT achieves the lowest empirical calibration error (ECE) in three in-domain datasets.
In terms of time consumption, our GPF-BERT has an 8$times$ speedup.
- Score: 31.32746943236811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have achieved remarkable performance in retrieval-based
dialogue systems, but they are shown to be ill calibrated. Though basic
calibration methods like Monte Carlo Dropout and Ensemble can calibrate well,
these methods are time-consuming in the training or inference stages. To tackle
these challenges, we propose an efficient uncertainty calibration framework
GPF-BERT for BERT-based conversational search, which employs a Gaussian Process
layer and the focal loss on top of the BERT architecture to achieve a
high-quality neural ranker. Extensive experiments are conducted to verify the
effectiveness of our method. In comparison with basic calibration methods,
GPF-BERT achieves the lowest empirical calibration error (ECE) in three
in-domain datasets and the distributional shift tasks, while yielding the
highest $R_{10}@1$ and MAP performance on most cases. In terms of time
consumption, our GPF-BERT has an 8$\times$ speedup.
Related papers
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
Modern deep neural networks (DNNs) often suffer from overconfidence, leading to miscalibration.
We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue.
FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples.
arXiv Detail & Related papers (2024-10-16T06:44:35Z) - GETS: Ensemble Temperature Scaling for Calibration in Graph Neural Networks [8.505932176266368]
Graph Neural Networks deliver strong classification results but often suffer from poor calibration performance, leading to overconfidence or underconfidence.
Existing post hoc methods, such as temperature scaling, fail to effectively utilize graph structures, while current GNN calibration methods often overlook the potential of leveraging diverse input information and model ensembles jointly.
In the paper, we propose Graph Ensemble TemperatureScaling, a novel calibration framework that combines input and model ensemble strategies within a Graph Mixture of Experts archi SOTA calibration techniques, reducing expected calibration error by 25 percent across 10 GNN benchmark datasets.
arXiv Detail & Related papers (2024-10-12T15:34:41Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - TernaryBERT: Distillation-aware Ultra-low Bit BERT [53.06741585060951]
We propose TernaryBERT, which ternarizes the weights in a fine-tuned BERT model.
Experiments on the GLUE benchmark and SQuAD show that our proposed TernaryBERT outperforms the other BERT quantization methods.
arXiv Detail & Related papers (2020-09-27T10:17:28Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
We show that deep-ensembles do not necessarily lead to improved calibration properties.
We show that standard ensembling methods, when used in conjunction with modern techniques such as mixup regularization, can lead to less calibrated models.
This text examines the interplay between three of the most simple and commonly used approaches to leverage deep learning when data is scarce.
arXiv Detail & Related papers (2020-07-17T07:32:24Z) - Multi-Class Uncertainty Calibration via Mutual Information
Maximization-based Binning [8.780958735684958]
Post-hoc multi-class calibration is a common approach for providing confidence estimates of deep neural network predictions.
Recent work has shown that widely used scaling methods underestimate their calibration error.
We propose a shared class-wise (sCW) calibration strategy, sharing one calibrator among similar classes.
arXiv Detail & Related papers (2020-06-23T15:31:59Z) - Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
Calibration in Deep Learning [21.08664370117846]
We show how Mix-n-Match calibration strategies can help achieve remarkably better data-efficiency and expressive power.
We also reveal potential issues in standard evaluation practices.
Our approaches outperform state-of-the-art solutions on both the calibration as well as the evaluation tasks.
arXiv Detail & Related papers (2020-03-16T17:00:35Z) - Intra Order-preserving Functions for Calibration of Multi-Class Neural
Networks [54.23874144090228]
A common approach is to learn a post-hoc calibration function that transforms the output of the original network into calibrated confidence scores.
Previous post-hoc calibration techniques work only with simple calibration functions.
We propose a new neural network architecture that represents a class of intra order-preserving functions.
arXiv Detail & Related papers (2020-03-15T12:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.