論文の概要: Exploring Large-scale Unlabeled Faces to Enhance Facial Expression
Recognition
- arxiv url: http://arxiv.org/abs/2303.08617v1
- Date: Wed, 15 Mar 2023 13:43:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 13:42:51.818547
- Title: Exploring Large-scale Unlabeled Faces to Enhance Facial Expression
Recognition
- Title(参考訳): 顔表情認識を支援する大規模未ラベル顔の探索
- Authors: Jun Yu, Zhongpeng Cai, Renda Li, Gongpeng Zhao, Guochen Xie, Jichao
Zhu, Wangyuan Zhu
- Abstract要約: 本研究では、ラベルのない顔データを用いて表現認識モデルを効果的に訓練する半教師付き学習フレームワークを提案する。
本手法では,顔認識データを完全に活用するために,信頼度を適応的に調整できる動的しきい値モジュールを用いる。
ABAW5 EXPRタスクでは,オフィシャル検証セットにおいて優れた結果を得た。
- 参考スコア(独自算出の注目度): 12.677143408225167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial Expression Recognition (FER) is an important task in computer vision
and has wide applications in human-computer interaction, intelligent security,
emotion analysis, and other fields. However, the limited size of FER datasets
limits the generalization ability of expression recognition models, resulting
in ineffective model performance. To address this problem, we propose a
semi-supervised learning framework that utilizes unlabeled face data to train
expression recognition models effectively. Our method uses a dynamic threshold
module (\textbf{DTM}) that can adaptively adjust the confidence threshold to
fully utilize the face recognition (FR) data to generate pseudo-labels, thus
improving the model's ability to model facial expressions. In the ABAW5 EXPR
task, our method achieved excellent results on the official validation set.
- Abstract(参考訳): 顔表情認識(FER)はコンピュータビジョンにおいて重要な課題であり、人間とコンピュータのインタラクション、インテリジェントセキュリティ、感情分析、その他の分野に広く応用されている。
しかし、FERデータセットの限られたサイズは、表現認識モデルの一般化能力を制限し、非効率なモデル性能をもたらす。
この問題に対処するために,ラベルのない顔データを用いて表現認識モデルを効果的に訓練する半教師付き学習フレームワークを提案する。
提案手法は動的しきい値モジュール (\textbf{DTM}) を用いて、信頼度を適応的に調整し、顔認識(FR)データをフル活用して擬似ラベルを生成することにより、表情をモデル化するモデルの能力を向上させる。
ABAW5 EXPRタスクでは,オフィシャル検証セットにおいて優れた結果を得た。
関連論文リスト
- Learning Diversified Feature Representations for Facial Expression
Recognition in the Wild [97.14064057840089]
本稿では,CNN層が抽出した顔表情認識アーキテクチャの特徴を多様化する機構を提案する。
AffectNet,FER+,RAF-DBの3つの顔表情認識実験の結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-17T19:25:28Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Frame-level Prediction of Facial Expressions, Valence, Arousal and
Action Units for Mobile Devices [7.056222499095849]
本稿では,AffectNetで事前学習した1つのEfficientNetモデルを用いて,顔の特徴を抽出し,フレームレベルの感情認識アルゴリズムを提案する。
当社のアプローチは,モバイルデバイス上でのビデオ解析にも適用できる。
論文 参考訳(メタデータ) (2022-03-25T03:53:27Z) - A Robust Framework for Deep Learning Approaches to Facial Emotion
Recognition and Evaluation [0.17398560678845074]
本稿では、FER用に開発したモデルを比較し、相互に比較するフレームワークを提案する。
AffectNetデータセットで、軽量な畳み込みニューラルネットワークをトレーニングする。
概念実証として提案したフレームワークを用いてWebアプリケーションを開発,デプロイする。
論文 参考訳(メタデータ) (2022-01-30T02:10:01Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Exploiting Emotional Dependencies with Graph Convolutional Networks for
Facial Expression Recognition [31.40575057347465]
本稿では,視覚における表情認識のためのマルチタスク学習フレームワークを提案する。
MTL設定において、離散認識と連続認識の両方のために共有特徴表現が学習される。
実験の結果,本手法は離散FER上での最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2021-06-07T10:20:05Z) - A Multi-resolution Approach to Expression Recognition in the Wild [9.118706387430883]
顔認識タスクを解決するためのマルチリゾリューション手法を提案する。
私たちは、しばしば異なる解像度で画像が取得されるという観察を直感的に根拠としています。
我々は、Affect-in-the-Wild 2データセットに基づいてトレーニングされたSqueeze-and-Excitationブロックを備えたResNetのようなアーキテクチャを使用する。
論文 参考訳(メタデータ) (2021-03-09T21:21:02Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
顔表情データベースF2EDについて述べる。
顔の表情は119人から54人まで、200万枚以上の画像が含まれている。
実世界のシナリオでは,不均一なデータ分布やサンプルの欠如が一般的であるので,数発の表情学習の課題を評価する。
顔画像合成のための統合されたタスク駆動型フレームワークであるComposeal Generative Adversarial Network (Comp-GAN) 学習を提案する。
論文 参考訳(メタデータ) (2020-01-17T03:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。