論文の概要: Identity-Preserving Knowledge Distillation for Low-resolution Face
Recognition
- arxiv url: http://arxiv.org/abs/2303.08665v1
- Date: Wed, 15 Mar 2023 14:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 13:22:38.710293
- Title: Identity-Preserving Knowledge Distillation for Low-resolution Face
Recognition
- Title(参考訳): 低分解能顔認識のためのアイデンティティ保存知識蒸留
- Authors: Yuhang Lu, Touradj Ebrahimi
- Abstract要約: 低解像度の顔認識は、現代の深層顔認識システムにとって難しい問題である。
本稿では,低分解能(LR)画像の低周波成分に蓄積される識別情報にネットワークを集中させる手法を提案する。
- 参考スコア(独自算出の注目度): 13.334500258498798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-resolution face recognition (LRFR) has become a challenging problem for
modern deep face recognition systems. Existing methods mainly leverage prior
information from high-resolution (HR) images by either reconstructing facial
details with super-resolution techniques or learning a unified feature space.
To address this issue, this paper proposes a novel approach which enforces the
network to focus on the discriminative information stored in the low-frequency
components of a low-resolution (LR) image. A cross-resolution knowledge
distillation paradigm is first employed as the learning framework. An
identity-preserving network, WaveResNet, and a wavelet similarity loss are then
designed to capture low-frequency details and boost performance. Finally, an
image degradation model is conceived to simulate more realistic LR training
data. Consequently, extensive experimental results show that the proposed
method consistently outperforms the baseline model and other state-of-the-art
methods across a variety of image resolutions.
- Abstract(参考訳): 低分解能顔認識(LRFR)は,現代の深層顔認識システムにおいて難しい問題となっている。
既存の手法は主に高解像度(hr)画像からの事前情報を活用し、顔の詳細を超高解像度技術で再構成するか、統一された特徴空間を学習する。
本稿では,低解像度(lr)画像の低周波成分に格納された識別情報にネットワークを集中させる新しい手法を提案する。
クロスレゾリューション知識蒸留パラダイムを学習フレームワークとして最初に採用する。
アイデンティティ保存ネットワーク、WaveResNet、ウェーブレット類似性損失は、低周波の詳細をキャプチャして性能を高めるように設計されている。
最後に、よりリアルなLRトレーニングデータをシミュレートするために、画像劣化モデルを考案する。
その結果,提案手法は様々な画像解像度において,ベースラインモデルや他の最先端手法よりも一貫して優れていた。
関連論文リスト
- Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
低解像度(LR)クエリIDイメージと高解像度(HR)ギャラリーイメージとの整合性を実現する。
実際のカメラとの違いにより、クエリ画像が分解能の低下に悩まされることがしばしばあるため、これは困難かつ実用的な問題である。
本稿では,問合せ画像の解像度に適応する動的計量を用いて,HRとLRの画像を直接比較するためのSRフリーなパラダイムについて検討する。
論文 参考訳(メタデータ) (2022-07-09T03:49:51Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder [11.985083962982909]
本稿では,非局所変分オートエンコーダ(textttNLVAE)という画像固有解を提案する。
textttNLVAEは,非局所領域からの非絡み合った情報を用いて高解像度画像を再構成する自己教師型戦略として導入された。
7つのベンチマークデータセットによる実験結果から,textttNLVAEモデルの有効性が示された。
論文 参考訳(メタデータ) (2022-04-02T18:43:55Z) - Pixel Distillation: A New Knowledge Distillation Scheme for
Low-Resolution Image Recognition [85.78793763053798]
我々は、高解像度(HR)画像から学習した重いネットワークモデルから、コンパクトなネットワークモデルに有用な知識を抽出する先駆的な試みを行っている。
本稿では,知識蒸留をモデル圧縮段階と高分解能表現伝達段階に分散させるTAS(Teacher-Assistant-Student)フレームワークを提案する。
提案手法では,重度教師モデルと同等の精度で,パラメータがはるかに少なく,推論速度が速く,低解像度の入力が可能な軽量ネットワークモデルを学習することができる。
論文 参考訳(メタデータ) (2021-12-17T14:31:40Z) - High-Frequency aware Perceptual Image Enhancement [0.08460698440162888]
マルチスケール解析に適した新しいディープニューラルネットワークを導入し,効率的なモデルに依存しない手法を提案する。
本モデルは,デノイング,デブロアリング,単一画像超解像などのマルチスケール画像強調問題に適用できる。
論文 参考訳(メタデータ) (2021-05-25T07:33:14Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - Multi Scale Identity-Preserving Image-to-Image Translation Network for
Low-Resolution Face Recognition [7.6702700993064115]
本稿では,画像から画像へ変換する深層ニューラルネットワークを提案する。
アイデンティティ関連の情報を保存しながら、非常に低解像度の顔を高解像度の顔に超解き放つことができる。
論文 参考訳(メタデータ) (2020-10-23T09:21:06Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
我々は,超解像残差畳み込み生成共役ネットワーク(SRResCGAN)を提案する。
これは、生成したLRドメインからHRドメインの画素単位の監督でモデルを逆トレーニングすることで、現実世界の劣化設定に従う。
提案するネットワークは,画像の高精細化と凸最適化によるエネルギーベース目的関数の最小化により,残差学習を利用する。
論文 参考訳(メタデータ) (2020-05-03T00:12:38Z) - Feature Super-Resolution Based Facial Expression Recognition for
Multi-scale Low-Resolution Faces [7.634398926381845]
超解像法はしばしば低分解能画像の高精細化に使用されるが、FERタスクの性能は極低分解能画像では制限される。
本研究では,物体検出のための特徴的超解像法に触発されて,頑健な表情認識のための新たな生成逆ネットワークに基づく超解像法を提案する。
論文 参考訳(メタデータ) (2020-04-05T15:38:47Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。