論文の概要: Latent-Conditioned Policy Gradient for Multi-Objective Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2303.08909v2
- Date: Sat, 05 Oct 2024 02:18:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:09:38.274398
- Title: Latent-Conditioned Policy Gradient for Multi-Objective Deep Reinforcement Learning
- Title(参考訳): 多目的深層強化学習のための潜在契約型政策グラディエント
- Authors: Takuya Kanazawa, Chetan Gupta,
- Abstract要約: 本稿では,政策勾配を用いて単一ニューラルネットワークを学習する多目的強化学習(MORL)アルゴリズムを提案する。
提案手法はポリシーネットワークの設計変更を伴わない連続的かつ離散的な行動空間で機能する。
- 参考スコア(独自算出の注目度): 2.1408617023874443
- License:
- Abstract: Sequential decision making in the real world often requires finding a good balance of conflicting objectives. In general, there exist a plethora of Pareto-optimal policies that embody different patterns of compromises between objectives, and it is technically challenging to obtain them exhaustively using deep neural networks. In this work, we propose a novel multi-objective reinforcement learning (MORL) algorithm that trains a single neural network via policy gradient to approximately obtain the entire Pareto set in a single run of training, without relying on linear scalarization of objectives. The proposed method works in both continuous and discrete action spaces with no design change of the policy network. Numerical experiments in benchmark environments demonstrate the practicality and efficacy of our approach in comparison to standard MORL baselines.
- Abstract(参考訳): 現実の世界におけるシーケンシャルな意思決定は、しばしば矛盾する目標の適切なバランスを見つける必要がある。
一般に、目的間の妥協パターンの異なるパターンを具現化するパレート最適ポリシーが多数存在し、ディープニューラルネットワークを用いてそれらを徹底的に得ることは技術的に困難である。
本研究では, 目的の線形スキャラライズに頼ることなく, 方針勾配による1つのニューラルネットワークを学習し, パレートセット全体をほぼ1回のトレーニングで取得する多目的強化学習(MORL)アルゴリズムを提案する。
提案手法はポリシーネットワークの設計変更を伴わない連続的かつ離散的な行動空間で機能する。
ベンチマーク環境での数値実験により,標準的なMORLベースラインと比較して,本手法の実用性と有効性を示す。
関連論文リスト
- Navigating Trade-offs: Policy Summarization for Multi-Objective Reinforcement Learning [10.848218400641466]
多目的強化学習(MORL)は、複数の目的を含む問題を解決するために用いられる。
本稿では,MORL が生成する解集合をクラスタリングする手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T15:26:38Z) - Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG)は、マルチモーダルポリシーから学習する新しいアクター批判アルゴリズムである。
DDiffPGはマルチモーダルトレーニングバッチを形成し、モード固有のQ-ラーニングを使用して、RL目的の固有の欲求を緩和する。
さらに,本手法では,学習モードを明示的に制御するために,モード固有の埋め込みにポリシーを条件付けることができる。
論文 参考訳(メタデータ) (2024-06-02T09:32:28Z) - HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [72.25707314772254]
本稿では,各タスクに対するパラメータの最適な調和部分空間を特定するための新しいソリューションであるHarmoDT(Harmony Multi-Task Decision Transformer)を紹介する。
このフレームワークの上位レベルは、調和部分空間を規定するタスク固有のマスクの学習に特化しており、内部レベルは、統一されたポリシーの全体的なパフォーマンスを高めるためにパラメータの更新に重点を置いている。
論文 参考訳(メタデータ) (2024-05-28T11:41:41Z) - Safe and Balanced: A Framework for Constrained Multi-Objective Reinforcement Learning [26.244121960815907]
本稿では,多目的学習と制約順守の政策最適化を協調するプライマリベースフレームワークを提案する。
提案手法は,複数のRL目標を最適化するために,新しい自然ポリシー勾配演算法を用いる。
また,提案手法は,安全性の高い多目的強化学習タスクにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:42:10Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - PD-MORL: Preference-Driven Multi-Objective Reinforcement Learning
Algorithm [0.18416014644193063]
本稿では,連続ロボット作業にスケーラブルな選好空間全体をカバーするために,単一のユニバーサルネットワークをトレーニングする新しいMORLアルゴリズムを提案する。
PD-MORLは、連続制御タスクに挑戦するために最大25%大きなハイパーボリュームを達成する。
論文 参考訳(メタデータ) (2022-08-16T19:23:02Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
汎用ロボットは、現実世界の非構造環境において困難なタスクを完了するために、多様な行動レパートリーを必要とする。
この問題に対処するため、目標条件強化学習は、コマンド上の幅広いタスクの目標に到達可能なポリシーを取得することを目的としている。
本研究では,長期的課題に対する目標条件付き政策を実践的に訓練する手法であるPlanning to Practiceを提案する。
論文 参考訳(メタデータ) (2022-05-17T06:58:17Z) - gTLO: A Generalized and Non-linear Multi-Objective Deep Reinforcement
Learning Approach [2.0305676256390934]
Generalized Thresholded Lexicographic Ordering (gTLO)は、非線形MORLと一般化MORLの利点を組み合わせた新しい手法である。
我々は、非線形MORLの標準ベンチマークと製造プロセス制御の領域からの実世界の応用について有望な結果を示す。
論文 参考訳(メタデータ) (2022-04-11T10:06:49Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
目的の選好から最適な政策を学習する単一政策 MORL の問題について検討する。
既存の方法は、多目的決定プロセスの正確な知識のような強い仮定を必要とする。
モデルベースエンベロップ値 (EVI) と呼ばれる新しいアルゴリズムを提案し, 包含された多目的$Q$学習アルゴリズムを一般化する。
論文 参考訳(メタデータ) (2020-11-19T22:35:31Z) - Robust Reinforcement Learning via Adversarial training with Langevin
Dynamics [51.234482917047835]
本稿では,頑健な強化学習(RL)エージェントを訓練する難しい課題に取り組むために,サンプリング視点を導入する。
本稿では,2人プレイヤポリシー手法のサンプリング版である,スケーラブルな2人プレイヤRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-14T14:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。