論文の概要: Navigating Trade-offs: Policy Summarization for Multi-Objective Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2411.04784v1
- Date: Thu, 07 Nov 2024 15:26:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:47.298555
- Title: Navigating Trade-offs: Policy Summarization for Multi-Objective Reinforcement Learning
- Title(参考訳): トレードオフをナビゲートする:多目的強化学習のための政策要約
- Authors: Zuzanna Osika, Jazmin Zatarain-Salazar, Frans A. Oliehoek, Pradeep K. Murukannaiah,
- Abstract要約: 多目的強化学習(MORL)は、複数の目的を含む問題を解決するために用いられる。
本稿では,MORL が生成する解集合をクラスタリングする手法を提案する。
- 参考スコア(独自算出の注目度): 10.848218400641466
- License:
- Abstract: Multi-objective reinforcement learning (MORL) is used to solve problems involving multiple objectives. An MORL agent must make decisions based on the diverse signals provided by distinct reward functions. Training an MORL agent yields a set of solutions (policies), each presenting distinct trade-offs among the objectives (expected returns). MORL enhances explainability by enabling fine-grained comparisons of policies in the solution set based on their trade-offs as opposed to having a single policy. However, the solution set is typically large and multi-dimensional, where each policy (e.g., a neural network) is represented by its objective values. We propose an approach for clustering the solution set generated by MORL. By considering both policy behavior and objective values, our clustering method can reveal the relationship between policy behaviors and regions in the objective space. This approach can enable decision makers (DMs) to identify overarching trends and insights in the solution set rather than examining each policy individually. We tested our method in four multi-objective environments and found it outperformed traditional k-medoids clustering. Additionally, we include a case study that demonstrates its real-world application.
- Abstract(参考訳): 多目的強化学習(MORL)は、複数の目的を含む問題を解決するために用いられる。
MORLエージェントは、異なる報酬関数によって提供される多様な信号に基づいて決定をしなければならない。
MORLエージェントを訓練すると、一連のソリューション(政治)が得られ、それぞれが目的(予測されたリターン)の間で異なるトレードオフを示す。
MORLは、単一ポリシーではなく、トレードオフに基づいて設定されたソリューションにおけるポリシーのきめ細かい比較を可能にすることで、説明可能性を高める。
しかし、解集合は典型的には大きく多次元であり、それぞれのポリシー(例えばニューラルネットワーク)はその目的値で表される。
本稿では,MORL が生成する解集合をクラスタリングする手法を提案する。
本手法は,政策行動と目標値の両方を考慮することにより,政策行動と目的空間内の地域との関係を明らかにすることができる。
このアプローチにより、意思決定者(DM)は、個々のポリシーを個別に調べるのではなく、ソリューションセットの全体的傾向や洞察を特定できる。
提案手法を4つの多目的環境で検証したところ,従来のk-メドロイドクラスタリングよりも優れていた。
さらに、実世界の応用を実証するケーススタディも含んでいます。
関連論文リスト
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Human-in-the-Loop Policy Optimization for Preference-Based
Multi-Objective Reinforcement Learning [13.627087954965695]
好みに基づくMORLのためのHuman-in-the-loopポリシー最適化フレームワークを提案する。
本手法は,事前知識を必要とせずに,DMの暗黙の選好情報を積極的に学習する。
我々は従来の3つのMORLアルゴリズムと4つの最先端の選好に基づくMORLアルゴリズムに対するアプローチを評価する。
論文 参考訳(メタデータ) (2024-01-04T09:17:53Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Multi-Target Multiplicity: Flexibility and Fairness in Target
Specification under Resource Constraints [76.84999501420938]
対象の選択が個人の結果にどのように影響するかを評価するための概念的および計算的枠組みを導入する。
目的変数選択から生じる多重度は, 1つのターゲットのほぼ最適モデルから生じるものよりも大きいことが示される。
論文 参考訳(メタデータ) (2023-06-23T18:57:14Z) - Provable Offline Preference-Based Reinforcement Learning [95.00042541409901]
本研究では,PbRL(Preference-based Reinforcement Learning)の問題について,人間のフィードバックを用いて検討する。
我々は、報酬が軌道全体にわたって定義できる一般的な報酬設定について考察する。
我々は, 軌道毎の集中性によって上界に拘束できる新しい単極集中係数を導入する。
論文 参考訳(メタデータ) (2023-05-24T07:11:26Z) - Latent-Conditioned Policy Gradient for Multi-Objective Deep Reinforcement Learning [2.1408617023874443]
本稿では,政策勾配を用いて単一ニューラルネットワークを学習する多目的強化学習(MORL)アルゴリズムを提案する。
提案手法はポリシーネットワークの設計変更を伴わない連続的かつ離散的な行動空間で機能する。
論文 参考訳(メタデータ) (2023-03-15T20:07:48Z) - Sample-Efficient Multi-Objective Learning via Generalized Policy
Improvement Prioritization [8.836422771217084]
マルチオブジェクト強化学習(MORL)アルゴリズムは、エージェントが異なる好みを持つ可能性のあるシーケンシャルな決定問題に対処する。
本稿では、一般化政策改善(GPI)を用いて、原則的、正式に派生した優先順位付けスキームを定義する新しいアルゴリズムを提案する。
実験により,本手法は多目的タスクの挑戦において,最先端のMORLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-18T20:54:40Z) - gTLO: A Generalized and Non-linear Multi-Objective Deep Reinforcement
Learning Approach [2.0305676256390934]
Generalized Thresholded Lexicographic Ordering (gTLO)は、非線形MORLと一般化MORLの利点を組み合わせた新しい手法である。
我々は、非線形MORLの標準ベンチマークと製造プロセス制御の領域からの実世界の応用について有望な結果を示す。
論文 参考訳(メタデータ) (2022-04-11T10:06:49Z) - Discovering Diverse Solutions in Deep Reinforcement Learning [84.45686627019408]
強化学習アルゴリズムは通常、特定のタスクの単一のソリューションを学ぶことに限定される。
連続的あるいは離散的な低次元潜在変数に条件付きポリシーを訓練することにより、無限に多くの解を学習できるRL法を提案する。
論文 参考訳(メタデータ) (2021-03-12T04:54:31Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
目的の選好から最適な政策を学習する単一政策 MORL の問題について検討する。
既存の方法は、多目的決定プロセスの正確な知識のような強い仮定を必要とする。
モデルベースエンベロップ値 (EVI) と呼ばれる新しいアルゴリズムを提案し, 包含された多目的$Q$学習アルゴリズムを一般化する。
論文 参考訳(メタデータ) (2020-11-19T22:35:31Z) - A Distributional View on Multi-Objective Policy Optimization [24.690800846837273]
大規模不変な方法で目的の好みを設定することができる多目的強化学習アルゴリズムを提案する。
フレームワーク内で異なる好みを設定することで、非支配的なソリューションの空間を追跡できることを示す。
論文 参考訳(メタデータ) (2020-05-15T13:02:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。