Plant Disease Detection using Region-Based Convolutional Neural Network
- URL: http://arxiv.org/abs/2303.09063v2
- Date: Tue, 12 Sep 2023 16:14:03 GMT
- Title: Plant Disease Detection using Region-Based Convolutional Neural Network
- Authors: Hasin Rehana, Muhammad Ibrahim, Md. Haider Ali
- Abstract summary: Agriculture plays an important role in the food and economy of Bangladesh.
One of the major reasons behind low crop production is numerous bacteria, virus and fungal plant diseases.
This paper aims at building a lightweight deep learning model for predicting leaf disease in tomato plants.
- Score: 2.5091819952713057
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Agriculture plays an important role in the food and economy of Bangladesh.
The rapid growth of population over the years also has increased the demand for
food production. One of the major reasons behind low crop production is
numerous bacteria, virus and fungal plant diseases. Early detection of plant
diseases and proper usage of pesticides and fertilizers are vital for
preventing the diseases and boost the yield. Most of the farmers use
generalized pesticides and fertilizers in the entire fields without
specifically knowing the condition of the plants. Thus the production cost
oftentimes increases, and, not only that, sometimes this becomes detrimental to
the yield. Deep Learning models are found to be very effective to automatically
detect plant diseases from images of plants, thereby reducing the need for
human specialists. This paper aims at building a lightweight deep learning
model for predicting leaf disease in tomato plants. By modifying the
region-based convolutional neural network, we design an efficient and effective
model that demonstrates satisfactory empirical performance on a benchmark
dataset. Our proposed model can easily be deployed in a larger system where
drones take images of leaves and these images will be fed into our model to
know the health condition.
Related papers
- Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction [2.7409168462107347]
We propose PlantPlotGAN, a physics-informed generative model capable of creating synthetic multispectral plot images with realistic vegetation indices.
The results demonstrate that the synthetic imagery generated from PlantPlotGAN outperforms state-of-the-art methods regarding the Fr'echet inception distance.
arXiv Detail & Related papers (2023-10-27T16:56:28Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
Disruptions in the plant's normal state, caused by diseases, often interfere with essential plant activities.
We propose a deep learning-based approach for efficient detection of plant diseases using drone-captured imagery.
arXiv Detail & Related papers (2023-05-22T21:15:12Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Paddy Leaf diseases identification on Infrared Images based on
Convolutional Neural Networks [0.0]
This paper implements a convolutional neural network (CNN) based on a model and tests a public dataset consisting of 636 infrared image samples.
The proposed model proficiently identified and classified paddy diseases of five different types and achieved an accuracy of 88.28%.
arXiv Detail & Related papers (2022-07-29T18:24:29Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Improved Neural Network based Plant Diseases Identification [0.0]
The agriculture sector is essential for every country because it provides a basic income to a large number of people and food as well, which is a fundamental requirement to survive on this planet.
Due to improper knowledge of plant diseases, farmers use fertilizers in excess, which ultimately degrade the quality of food.
In today time, Image processing is used to recognize and catalog plant diseases using the lesion region of plant leaf.
arXiv Detail & Related papers (2021-01-01T11:49:56Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks.
Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification.
arXiv Detail & Related papers (2020-12-14T10:44:22Z) - Weakly Supervised Learning Guided by Activation Mapping Applied to a
Novel Citrus Pest Benchmark [6.239768930024569]
Integrated Pest Management is the most widely used process to prevent and mitigate the damages caused by pests and diseases in citrus crops.
We design a weakly supervised learning process guided by saliency maps to automatically select regions of interest in the images.
Experiments conducted on two large datasets demonstrate that our results are very promising for the problem of pest and disease classification in the agriculture field.
arXiv Detail & Related papers (2020-04-22T01:26:50Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.