PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction
- URL: http://arxiv.org/abs/2310.18268v1
- Date: Fri, 27 Oct 2023 16:56:28 GMT
- Title: PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction
- Authors: Felipe A. Lopes, Vasit Sagan, Flavio Esposito
- Abstract summary: We propose PlantPlotGAN, a physics-informed generative model capable of creating synthetic multispectral plot images with realistic vegetation indices.
The results demonstrate that the synthetic imagery generated from PlantPlotGAN outperforms state-of-the-art methods regarding the Fr'echet inception distance.
- Score: 2.7409168462107347
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Monitoring plantations is crucial for crop management and producing healthy
harvests. Unmanned Aerial Vehicles (UAVs) have been used to collect
multispectral images that aid in this monitoring. However, given the number of
hectares to be monitored and the limitations of flight, plant disease signals
become visually clear only in the later stages of plant growth and only if the
disease has spread throughout a significant portion of the plantation. This
limited amount of relevant data hampers the prediction models, as the
algorithms struggle to generalize patterns with unbalanced or unrealistic
augmented datasets effectively. To address this issue, we propose PlantPlotGAN,
a physics-informed generative model capable of creating synthetic multispectral
plot images with realistic vegetation indices. These indices served as a proxy
for disease detection and were used to evaluate if our model could help
increase the accuracy of prediction models. The results demonstrate that the
synthetic imagery generated from PlantPlotGAN outperforms state-of-the-art
methods regarding the Fr\'echet inception distance. Moreover, prediction models
achieve higher accuracy metrics when trained with synthetic and original
imagery for earlier plant disease detection compared to the training processes
based solely on real imagery.
Related papers
- Small data deep learning methodology for in-field disease detection [6.2747249113031325]
We present the first machine learning model capable of detecting mild symptoms of late blight in potato crops.
Our proposal exploits the availability of high-resolution images via the concept of patching, and is based on deep convolutional neural networks with a focal loss function.
Our model correctly detects all cases of late blight in the test dataset, demonstrating a high level of accuracy and effectiveness in identifying early symptoms.
arXiv Detail & Related papers (2024-09-25T17:31:17Z) - Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection [87.22082662250999]
We introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process.
We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image.
Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario.
arXiv Detail & Related papers (2024-09-16T18:00:00Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
Disruptions in the plant's normal state, caused by diseases, often interfere with essential plant activities.
We propose a deep learning-based approach for efficient detection of plant diseases using drone-captured imagery.
arXiv Detail & Related papers (2023-05-22T21:15:12Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
arXiv Detail & Related papers (2022-07-16T12:05:06Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Temporal Prediction and Evaluation of Brassica Growth in the Field using
Conditional Generative Adversarial Networks [1.2926587870771542]
The prediction of plant growth is a major challenge, as it is affected by numerous and highly variable environmental factors.
This paper proposes a novel monitoring approach that comprises high- throughput imaging sensor measurements and their automatic analysis.
Our approach's core is a novel machine learning-based growth model based on conditional generative adversarial networks.
arXiv Detail & Related papers (2021-05-17T13:00:01Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.