Learning with Noisy Labels through Learnable Weighting and Centroid Similarity
- URL: http://arxiv.org/abs/2303.09470v2
- Date: Tue, 25 Jun 2024 14:36:33 GMT
- Title: Learning with Noisy Labels through Learnable Weighting and Centroid Similarity
- Authors: Farooq Ahmad Wani, Maria Sofia Bucarelli, Fabrizio Silvestri,
- Abstract summary: noisy labels are prevalent in domains such as medical diagnosis and autonomous driving.
We introduce a novel method for training machine learning models in the presence of noisy labels.
Our results show that our method consistently outperforms the existing state-of-the-art techniques.
- Score: 5.187216033152917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel method for training machine learning models in the presence of noisy labels, which are prevalent in domains such as medical diagnosis and autonomous driving and have the potential to degrade a model's generalization performance. Inspired by established literature that highlights how deep learning models are prone to overfitting to noisy samples in the later epochs of training, we propose a strategic approach. This strategy leverages the distance to class centroids in the latent space and incorporates a discounting mechanism, aiming to diminish the influence of samples that lie distant from all class centroids. By doing so, we effectively counteract the adverse effects of noisy labels. The foundational premise of our approach is the assumption that samples situated further from their respective class centroid in the initial stages of training are more likely to be associated with noise. Our methodology is grounded in robust theoretical principles and has been validated empirically through extensive experiments on several benchmark datasets. Our results show that our method consistently outperforms the existing state-of-the-art techniques, achieving significant improvements in classification accuracy in the presence of noisy labels. The code for our proposed loss function and supplementary materials is available at https://github.com/wanifarooq/NCOD
Related papers
- Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Analyze the Robustness of Classifiers under Label Noise [5.708964539699851]
Label noise in supervised learning, characterized by erroneous or imprecise labels, significantly impairs model performance.
This research focuses on the increasingly pertinent issue of label noise's impact on practical applications.
arXiv Detail & Related papers (2023-12-12T13:51:25Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
The presence of noisy labels in a training dataset can significantly impact the performance of machine learning models.
We introduce a novel algorithm called TURN, which robustly and efficiently transfers the prior knowledge of pre-trained models.
arXiv Detail & Related papers (2023-10-24T20:28:59Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Addressing Class Imbalance in Semi-supervised Image Segmentation: A
Study on Cardiac MRI [28.656853454251426]
Inadequate training for those particular classes could introduce more noise to the generated pseudo labels, affecting overall learning.
We propose maintaining a confidence array that records class-wise performance during training.
A fuzzy fusion of these confidence scores is proposed to adaptively prioritize individual confidence metrics in every sample.
Our proposed method considers all the under-performing classes with dynamic weighting and tries to remove most of the noises during training.
arXiv Detail & Related papers (2022-08-31T21:25:00Z) - Prototype-Anchored Learning for Learning with Imperfect Annotations [83.7763875464011]
It is challenging to learn unbiased classification models from imperfectly annotated datasets.
We propose a prototype-anchored learning (PAL) method, which can be easily incorporated into various learning-based classification schemes.
We verify the effectiveness of PAL on class-imbalanced learning and noise-tolerant learning by extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-06-23T10:25:37Z) - Robust Imitation Learning from Noisy Demonstrations [81.67837507534001]
We show that robust imitation learning can be achieved by optimizing a classification risk with a symmetric loss.
We propose a new imitation learning method that effectively combines pseudo-labeling with co-training.
Experimental results on continuous-control benchmarks show that our method is more robust compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-20T10:41:37Z) - Early-Learning Regularization Prevents Memorization of Noisy Labels [29.04549895470588]
We propose a novel framework to perform classification via deep learning in the presence of noisy annotations.
Deep neural networks have been observed to first fit the training data with clean labels during an "early learning" phase.
We design a regularization term that steers the model towards these targets, implicitly preventing memorization of the false labels.
arXiv Detail & Related papers (2020-06-30T23:46:33Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.