Analyze the Robustness of Classifiers under Label Noise
- URL: http://arxiv.org/abs/2312.07271v1
- Date: Tue, 12 Dec 2023 13:51:25 GMT
- Title: Analyze the Robustness of Classifiers under Label Noise
- Authors: Cheng Zeng and Yixuan Xu and Jiaqi Tian
- Abstract summary: Label noise in supervised learning, characterized by erroneous or imprecise labels, significantly impairs model performance.
This research focuses on the increasingly pertinent issue of label noise's impact on practical applications.
- Score: 5.708964539699851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the robustness of label noise classifiers, aiming to
enhance model resilience against noisy data in complex real-world scenarios.
Label noise in supervised learning, characterized by erroneous or imprecise
labels, significantly impairs model performance. This research focuses on the
increasingly pertinent issue of label noise's impact on practical applications.
Addressing the prevalent challenge of inaccurate training data labels, we
integrate adversarial machine learning (AML) and importance reweighting
techniques. Our approach involves employing convolutional neural networks (CNN)
as the foundational model, with an emphasis on parameter adjustment for
individual training samples. This strategy is designed to heighten the model's
focus on samples critically influencing performance.
Related papers
- Foster Adaptivity and Balance in Learning with Noisy Labels [26.309508654960354]
We propose a novel approach named textbfSED to deal with label noise in a textbfSelf-adaptivtextbfE and class-balancetextbfD manner.
A mean-teacher model is then employed to correct labels of noisy samples.
We additionally propose a self-adaptive and class-balanced sample re-weighting mechanism to assign different weights to detected noisy samples.
arXiv Detail & Related papers (2024-07-03T03:10:24Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
The presence of noisy labels in a training dataset can significantly impact the performance of machine learning models.
We introduce a novel algorithm called TURN, which robustly and efficiently transfers the prior knowledge of pre-trained models.
arXiv Detail & Related papers (2023-10-24T20:28:59Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Learning with Noisy Labels through Learnable Weighting and Centroid Similarity [5.187216033152917]
noisy labels are prevalent in domains such as medical diagnosis and autonomous driving.
We introduce a novel method for training machine learning models in the presence of noisy labels.
Our results show that our method consistently outperforms the existing state-of-the-art techniques.
arXiv Detail & Related papers (2023-03-16T16:43:24Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
We propose a novel training approach termed adversarial noisy masking.
It adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples.
It is tested on both synthetic and real-world noisy datasets.
arXiv Detail & Related papers (2023-02-14T03:13:26Z) - Label Noise-Robust Learning using a Confidence-Based Sieving Strategy [15.997774467236352]
In learning tasks with label noise, improving model robustness against overfitting is a pivotal challenge.
Identifying the samples with noisy labels and preventing the model from learning them is a promising approach to address this challenge.
We propose a novel discriminator metric called confidence error and a sieving strategy called CONFES to differentiate between the clean and noisy samples effectively.
arXiv Detail & Related papers (2022-10-11T10:47:28Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.